
Class Embeddings Enter Class-conditional Diffusion Models

Zixuan Dong * 1 Chuanyang Jin * 1 Chang Liu * 1 Peiqi Liu * 1

Abstract
Guided diffusion incorporates class information
into the diffusion models to trade off mode cover-
age and sample fidelity. To perform the guidance
without a classifier, classifier-free diffusion guid-
ance is recently introduced where a conditional
and an unconditional diffusion model are jointly
trained. However, it remains unclear how to em-
bed class-specific information into the conditional
training process, since we do not have access to
the original implementation. Thus, we propose
several potential class embedding patterns such
as Uniform embedding, Pyramid embedding, and
Bottleneck embedding under the framework of
Class Embedding Networks (CEN), which explic-
itly generate learnable mappings from the class
labels. During the reverse diffusion process, the
generated mappings from CENs are concatenated
with each layer of the noise estimator. The con-
catenation of class embeddings allows the noise
estimator to be class conditional. In our experi-
ment, we evaluated different embedding patterns
and trade-offs between Pyramid embedding and
Bottleneck embedding. In the end, we discuss
about our attempt to use the noisy-label dataset to
perform class-conditional diffusion.

1. Introduction
In the past several years, deep generative models have
achieved great success in the area of image generation, nat-
ural language processing, and speech recognization. Par-
ticularly, in the task of generating high-fidelity images, the
Generative Adversarial Network (GAN) (Goodfellow et al.,
2014) uses a generator-discriminator structure, where the
generator tries to produce high-quality fake images to con-
fuse the discriminator, while the discriminator wants to
distinguish between those generated fake images and the
ground-truth source images. However, there are two major
downsides to the GAN model. First, the model structure

*Equal contribution 1New York University. Correspondence to:
Zixuan Dong <zd662@nyu.edu>.

Preliminary work.

entails that either the generator part or the discriminative
part is trained against a nonstatic adversary. As a result, the
model often collapses or needs very careful hyperparame-
ter tuning. Second, due to the design of the loss function,
although the generated images have high fidelity compared
with the source images, the generation of the same source
image cannot give diverse results varying on the local de-
tails.

Recently, the Denoising Diffusion Probabilistic Model
(DDPM) (Ho et al., 2020), which is also a deep genera-
tive model, has been shown to outperform the GAN model
in the sense that it generates images with both high fidelity
and diversity. Typically, the DDPM has two processes. In
the forward noising pass, it keeps adding Gaussian noises
to the input image, and eventually, the corrupted image will
converge to a Gaussian distribution. Then, in the reverse de-
noising process, the model wants to undo the first process by
estimating the noise added in each step and then sampling
an image in the previous time step. In terms of the model
architecture, the DDPM employs the U-Net (Ronneberger
et al., 2015) to estimate the noise. With a symmetric archi-
tecture (inputs and outputs are of the same spatial size), the
U-Net consists of WideResNet encoder and decoder blocks
with skip connections between them, group normalization,
and self-attention blocks. One remarkable breakthrough
where the DDPM beats the performance of the GAN model
is made by the Classifier-guidance DDPM (Dhariwal &
Nichol, 2021). The novelty of this method is to add gradient
guidance computed from a trained classifier to the estimated
mean of the distributions during the sampling process. By
manipulating the strength of the guidance, the Classifier-
guidance DDPM can trade off image fidelity and diversity.
As a result, a well-chosen classifier-guidance strength can
enable the model to generate real images with rich detail
diversity.

However, if one does not have access to a classifier, can we
still boost the performance of the diffusion models while
trading off the image fidelity and diversity? This comes to
the Classifier-free DDPM (Ho & Salimans, 2022). Different
from the Classifier-guidance DDPM, the model is now con-
ditioned on the image labels with some probability during
training. And when we use the trained model to sample
images, the sampling distributions in each time step are esti-
mated through a linear combination of the conditioned and

Class Embeddings enter class-conditional Diffusions models

unconditioned noise predictions. Note that here the class
label serves as guidance during the sampling process and by
manipulating the coefficients of the conditioned and uncon-
ditioned noise estimations, we can trade off the fidelity and
diversity as the classifier-guidance DDPM. In this project,
we wonder how different structures of image class embed-
ding affect the performance of the classifier-free DDPM.
Therefore, in the rest of this report, we proceed with our
discussion as follows. In section 2, we briefly summarize
the math background of the diffusion models. Then, section
3 elaborates on the algorithmic and architectural details of
the classifier-free DDPM. After that, we show our exper-
imental results on different class embedding structures in
section 4. Additionally, we share our experience of using
a noisy-label dataset to train a class-conditional diffusion
model in section 5. In the end, we provide some further
discussions and our conclusion.

2. Background
Our researches belong to the large family of Diffusion mod-
els (Sohl-Dickstein et al., 2015). The models are inspired
by diffusion process, which is a kind of random process
(Xt)t≥0 that pictures the location of a particle moving at
random but also governed by a drift and a random noise.
Unlike other generative models which use discriminators
(GAN) or encoders (VAE), etc., diffusion models use a
Markov chain that gradually adds Gaussian noise to the data
according to a variance schedule β1, . . . , βT as the approx-
imate posterior q (x1:T | x0), called the forward diffusion
process:

q (x1:T | x0) :=

T∏
t=1

q (xt | xt−1) ,

q (xt | xt−1) := N
(
xt;

√
1− βtxt−1, βtI

)
(1)

This way, the sample x0 gradually loses its features and as
T → ∞, xT becomes an isotropic Gaussian distribution.
The variances βt can be learned by reparameterization or
held constant as hyperparameters, and expressiveness of the
reverse process is ensured in part by the choice of Gaussian
conditionals in pθ (xt−1 | xt), because both processes have
the same functional form when βt are small.

Now we want to reverse the above process to recreate the
sample x0 from the heavily noised xT . The model then pre-
dicts the distriubtion pθ (x0) :=

∫
pθ (x0:T) dx1:T , where

x1, . . . ,xT are latents of the same dimensionality as the
data x0 ∼ q (x0). The joint distribution pθ (x0:T) is the
reverse process as a Markov chain with learned Gaussian

transitions starting at p (xT) = N (xT ;0, I):

pθ (x0:T) := p (xT)

T∏
t=1

pθ (xt−1 | xt) ,

pθ (xt−1 | xt) := N (xt−1;µθ (xt, t) ,Σθ (xt, t)) (2)

3. Method
In this section, we will first summarize how the classifier-
free guidance diffusion model is derived. Next, we will pro-
pose different methods to insert class embeddings into the
conditional Diffusions model to make it class conditional,
which is an implementation detail missed in the original
paper.

Algorithm 1 Joint training a diffusion model with classifier-
free guidance (Ho & Salimans, 2022)
Require: puncond: probability of unconditional training

1: repeat
2: (x, c) ∼ p(x, c) {Sample data with conditioning

from the dataset}
3: c ← ∅ with probability puncond {Randomly discard

conditioning to train unconditionally}
4: λ ∼ p(λ) {Sample log SNR value}
5: ϵ ∼ N (0, I)
6: zλ = αλx+ σλσ {Corrupt data to the sampled log

SNR value}
7: Take gradient step on ∇θ∥ϵθ(zλ, c) − ϵ∥2

{Optimization of denoising model}
8: until converged

Algorithm 2 Conditional sampling with classifier-free guid-
ance (Ho & Salimans, 2022)
Require: w: guidance strength
Require: c: conditioning information for conditional sam-

pling
Require: λ1, . . . , λT : increasing log SNR sequence with

λ1 = λmin, λT = λmax

1: z1 ∼ N (0, I)
2: for t = 1, . . . , T do
3: ϵ̃t = (1 + w)ϵθ (zt, c) − wϵθ (zt){Sampling step

(could be replaced by another sampler, e.g. DDIM)}
4: x̃t = (zt − σλt ϵ̃t) /αλt

5: zt+1∼N
(
µ̃λt+1|λt

(zt,x̃t),
(
σ̃2
λt+1|λt

)1−v(
σ2
λt|λt+1

)v
)

if
t < T else zt+1 = x̃t

6: end for{Form the classifier-free guided score at log
SNR λt}

7: return zT+1

Class Embeddings enter class-conditional Diffusions models

3.1. Classifier-Free Guidance Diffusions

Recently some researchers are attempting to synthesize
images belonging to a specific class and to generate an
augmented image classification dataset using the Diffusion
model. (Certainly, with some small modification, we can
finetune these methodologies to make them fit in cases other
than image classification) One such example is classifier-
free guidance Diffusion.

The basic idea of classifier-free Guidance Diffusions (Ho
& Salimans, 2022) comes from classifier-guided Diffusions
(Dhariwal & Nichol, 2021). Assume the Diffusions score
ϵθ(zλ, c) ≈ −σλ∇zλ log p(zλ|c) where c is the class la-
bel. During sampling steps of classifier guided Diffusions
(Dhariwal & Nichol, 2021), in each reverse forward pro-
cess, classifier guided Diffusions (Dhariwal & Nichol, 2021)
composes a new noise estimation in this manner:

ϵ̃θ(zλ, c) = ϵθ(zλ, c)− wσλ∇zλpθ(c|zλ) (3)
≈ −σλ∇zλ [log p(zλ|c) + w log pθ(c|zλ)] (4)

where pθ(c|zλ) is a pre-trained classifier that recognize zλ
into some class. If we consider ϵ̃θ(zλ, c) as∇zλ log p̃(zλ|c),
then this noise estimation is equivalent to push sampled
images in a direction that maximizes p̃(zλ|c) where

p̃(zλ|c) ∝ p(zλ|c)pθ(c|zλ)w (5)

Classifier free guidance utilizes this formula and combines
it with Bayesian Theorem. By Bayesian Theorem we have
pθ(c|zλ) ∝ p(zλ|c)

p(zλ)
, if we insert it back to Equation 5, we

can derive a new formula

p̃(zλ|c) ∝
p(zλ|c)w+1

p(zλ)w
(6)

Classifier free guidance Diffusions (Ho & Salimans, 2022)
then suggested that we can train an conditional noise estima-
tor ϵθ(zλ, c) ≈ −σλ∇zλ log p(zλ|c) and an unconditional
noise estimator ϵθ(zλ) ≈ −σλ∇zλ log p(zλ). According to
Equation 6, we can therefore derive a new noise estimator

ϵ̃θ(zλ, c) = (1 + w)ϵθ(zλ, c)− wϵθ(zλ) (7)

Classifier-free guidance Diffusions (Ho & Salimans, 2022)
therefore proposed a training algorithm training both a con-
ditional noise estimator ϵθ(zλ, c) and an unconditional noise
estimator ϵθ(zλ, ∅). They also proposed a corresponding
sampling algorithm generating images belonging to a spe-
cific class. We have recalled these two algorithms in this
paper.

3.2. Class embedddings in denoising models

Even though training and sampling algorithms of classifier
free guidance network have already been proposed, it is

still under discussion what model architecture should be
used to estimate noise. In DDPM paper (Ho et al., 2020), a
modified version of UNet (Ronneberger et al., 2015) was
proposed to estimate the noise unconditionally in the reverse
process. This modified version of UNet replaces some of the
original UNet’s convolutional neural network (CNN) lay-
ers with Multi-head attention layers (Vaswani et al., 2017).
We design a similar UNet architecture to estimate noise
(both unconditionally and conditionally) in (Ho & Salimans,
2022). In this version, we add class embedding (we also en-
code class embedding of ∅ in order to fit this architecture to
unconditional noise estimation) to each layer of the network.
The high-level view of our network architecture is shown in
Figure 1 (The channel number, image embedding’s widths,
and heights are noted in the figure). The design details (of
the unconditional noise estimator) come as follows:

1. In each layer of the encoder (including the middle
bottleneck), we sequentially apply CNN, multi-head
Attention, and max pooling on image embeddings.

2. In each layer the decoder, we apply concatenation of
image embeddings from the encoder (Figure 1 uses ar-
rows connecting blocks in the encoder and the decoder
to indicate which layer in the encoder will be concate-
nated to which layer in the decoder), upsampling, CNN,
multi-head Attention on image embeddings.

3. We also apply skip connections between different sizes
of image embeddings in the encoder and the decoder
(not shown in Figure 1).

If we are going to include class embeddings (derived from
class label using Class Embedding Networks (CEN)) in this
network to make it class-conditional, after we conduct CNN
and multi-head Attention on each layer, we concatenate a
class embedding vector encoding different features into the
image embeddings. (Purple blocks attached to each layer
block in Figure 1).

But how large should class embedding in each layer be? We
have proposed three different patterns:

1. Uniformly concatenate the same size of class embed-
ding vector in each layer. We name this class embed-
ding pattern as Uniform class embedding.

2. Make the size of class embedding vector equal to the
number of channels of each layer. The closer each layer
is to the bottleneck block, the larger class embeddings
will be concatenated to that layer. We name this class
embedding pattern as Pyramid class embedding.

3. Insert class embedding only to the bottleneck block.
If we still retain a small number of class embeddings
in other layers, we call it Bottleneck class embedding;

Class Embeddings enter class-conditional Diffusions models

Figure 1. UNet model architecture used in Diffusions reverse process

if all class embeddings in layers other than bottleneck
are eliminated, we call it Complete Bottleneck class
embedding.

We compare these three types of class embedding patterns
carefully in section 4. In summary, the final result shows
that Uniform class embedding fails to improve generated
images’ quality as expected as we increase the number of
features in each layer, which objects to our common sense
that the more features considered, the better the model is.
Bottleneck and Complete Bottleneck class embedding seem
to achieve the best generated image quality while Pyramid
class embedding achieves only slightly worse image quality
but better diversity.

Class Embed Type FID IS NLL

Uniform-1 3,253 3.575 3.084
Uniform-16 3.240 2.717 1.851
Uniform-256 3.240 4.671 0.392
Complete Bottleneck 3.223 7.416 0.003
Bottleneck 3.219 7.711 0.005
Pyramid 3.217 7.472 0.027

Table 1. FID, IS, NLL scores for Class Embedding types men-
tioned in section 3.2

4. Experiments
In this section, we display our experiments conducted on
the MNIST dataset. Firstly we explain what metrics we
are using to evaluate generated images. Next, we will use
these metrics to compare the performances of different class
embedding patterns.

4.1. Metrics

Three metrics we evaluate generated images by are Fréchet
Inception Distance (FID) (Heusel et al., 2017), Inception
Score (IS) (Salimans et al., 2016), and Negative Log Likeli-
hood (NLL) of an image belonging to a specific class.

FID and IS consider both image diversity and image qual-
ities. However, according to a series of research starting
from (Brock et al., 2018), empirically, FID is more special-
ized in image diversity, and IS is more specialized in image
quality. IS measures images’ quality by running a classifier
classifying the images p(y|x) where x is the image and y
is the image label and also measures images’ diversity con-
sidering p(y) across classification results of all generated
images; in short, it measures

KL(p(y|x)||p(y))

FID measures images’ quality by comparing the mean of
generated images’ and real images’ feature vectors (µw, µ
respectively) and measures images’ diversity by comparing
the variance of generated image’s and real images’ feature
vectors (Σw, Σ); more specifically it measures

|µ− µw|+tr(Σ + Σw − 2(Σ + Σw − 2(ΣΣw)
1
2))

In our experiment, we train a classifier to compute IS and
uses the pre-trained Inception-V3 (Szegedy et al., 2016) to
compute FID score.

Even though IS is famously used to evaluate generative
models, it has certain drawbacks when used to evaluate
a class-conditional generative model. Firstly, Inception
score cannot be evaluated class by class. (Assume the class-
conditional generative models can generate enough high-
quality images) If we evaluate IS on one class of image,
then p(y) will be extremely unbalanced and IS will be un-
reasonably small. However, evaluation class by class is

Class Embeddings enter class-conditional Diffusions models

Figure 2. Generated Images using Bottleneck class embedding

an important ability for class-conditioned metrics to have,
given the consideration that researchers might want to know
exactly which class the model does terribly on.

Secondly, the model has methods to cheat on IS. Suppose the
trained class conditional model is not class sensitive, namely,
the images it generates on one class might actually belong
to many different classes. In this case, if images it generates
for every class together form a uniform distribution p(y) and
most generated images can be well classified, even though
the model fails to be class conditional, it can still obtain
high IS through cheating.

To overcome these two drawbacks, we propose NLL score.
We use the same classifier we use in IS to compute NLL
score. NLL score measures the probability of one image
belonging to one specific class. Suppose the classifier im-
plies the conditional distribution of the class label given the
generated image p(y|x). NLL score equals to

− log p(y = ccorrect|x)

So the smaller the average NLL score is, the better class
conditional generative model is. NLL score can be evaluated
class by class, and it is class sensitive. Therefore NLL can
fix the drawbacks of IS in evaluating the class conditional
generative model.

4.2. Varying class embedding and Fix everything else

We conduct our comparison experiment on the MNIST
dataset. We only research on class embedding patterns and
select the hyperparameters according to experiments already
conducted by classifier-free guidance Diffusions (Ho & Sal-
imans, 2022). Some Diffusions specific hyperparameters
are selected as follows:

1. When classifier free guidance Diffusions (Ho & Sal-
imans, 2022) was trained on ImageNet 128×128, IS
score became the highest when w = 4.0 while FID
became the highest when w = 0.3. In our experiment,
we just fix w = 4.0

2. Classifier free guidance Diffusions (Ho & Sali-

mans, 2022) performed equally well when uncondi-
tional model was trained with probability puncond ∈
{0.1, 0.2}. In our experiment, we just fix puncond = 0.2

3. When classifier free guidance Diffusions (Ho & Sali-
mans, 2022) was trained on ImageNet 64×64, v was
set to 0.2, and we also set v to this number as well

4. Sampling steps in our experiment are selected to be
T = 1000, which is close to T = 1024, the best
sampling steps selected by classifier-free guidance Dif-
fusions (Ho & Salimans, 2022).

5. Variance Scheduler are cosine scheduler where αt =
cos (t/T+s

1+s
π
2) and s is set to be 0.0008

6. Time embeddings added to each layer of noise estima-
tor is set to be size 100

Besides these Diffusions specific hyperparameters, other
parameters are selected as follows:

1. The number of channels of each noise estimator layer
follow Figure 1, the encoder channel numbers are 1,
128, 256, 256 respectively, so are the decoder channel
numbers. The bottleneck block has a channel of size
1024.

2. All Multi-head Attentions (Vaswani et al., 2017) in
noise estimator are set to have only one head.

3. Each model is trained only 25 epochs to prevent over-
fitting

All class embeddings are added in a symmetric manner;
that is the number of class embeddings added to one noise
estimator’s encoder layer is the same as that added to the
corresponding decoder layer. For simplicity, we use a length
five (the first four entries represent the class embedding
size for four encoder layers and the last entry represents
the class embedding size for one bottleneck layer) array to
indicate the class embedding size. Uniform-i in Table 1
can be described by vector [i, i, i, i, i]; Pyramid in our ex-
periment can be described by vector [1, 128, 256, 256, 512];
Bottleneck and Complete Bottleneck in this experiment can
be described by vector [1, 1, 1, 1, 1024] and [0, 0, 0, 0, 1024].
In this way, Pyramid, Bottleneck and Complete Bottleneck
encode a similar number of class features in all of their class
embeddings.

The results of the experiments are shown in Table 1. As
we can see, even though we encode more and more class
features from Uniform-1 to Uniform-256, FID, IS, and NLL
does not improve as expected and Uniform-16 even exhibits
a decreased IS score. Pyramid, Bottleneck, and Complete
Bottleneck achieve the best FID, IS, and NLL respectively.

Class Embeddings enter class-conditional Diffusions models

We personally think Complete Bottleneck is worse than
Bottleneck and Pyramid since neither its IS nor FID is better
than those of Bottleneck and Pyramid and its low NLL fails
to outperform Bottleneck greatly. Perhaps this indicates that
we still want to preserve some class embeddings in layers
other than a bottleneck. As for Bottleneck and Pyramid,
it seems that Bottleneck is better in image quality while
Pyramid is better in image diversity.

4.3. Generate images

In the paper (Ho & Salimans, 2022), the authors proposed
a methodology requiring future work to investigate. They
wished to use both conditional and unconditional Diffusions
to denoise only in the very early stages and to switch back
to unconditional only Diffusions in later stages. We use
Bottleneck class embeddings, switch the number of heads
of every multi-head attention (Vaswani et al., 2017) into 4,
and train for only 12 epochs (to further prevent overfitting)
on the MNIST dataset. We generate some samples with
w = 4.0 and v = 3.0. The generated images are shown
in Figure 2. Even though we do not measure FID, IS, and
NLL on these images, these images have high visual quality
and are class distinguishable. We, therefore, believe that
the ideas proposed in future work part in (Ho & Salimans,
2022) should be able to work well.

5. Noisy Label Class-conditional Diffusions
In this section, we locate ourselves in the setting where
some images have the wrong labels (noisy labels) but we
do not know exactly which ones are like that 1. Since we
still want to perform the class-conditional diffusion method
as mentioned in the previous sections, we wonder how we
should detect the potential noisy label and mitigate their
negative influence on the performance.

Our attempt is to borrow ideas from Curriculum Learning
(CL) (Bengio et al., 2009). Generally speaking, CL de-
scribes a type of learning in which the model is first trained
with only easy examples of a task and then gradually in-
crease the task difficulty, which is in contrast to training the
model on the entire dataset for every epoch. In particular,
we adopt the method introduced by Zhou et al. (2021) to
sample training batch according to the following score:

at(i) :=
〈
yi − f(xi; θt),

∂f(xi; θt)

∂t

∣∣∣
D

〉
where for each training datapoint i in the training set D in
t-th epoch, the first term represents the residual (difference
between the model output and the target) and the second rep-
resents the linear dynamics computed on the whole dataset

1Our code can be found through this link
https://github.com/Konokiii/Noisy-Label-Diffusion

(how the model f changes over different epochs in terms of
speed and direction).

We want to choose samples with a high score, since, on the
one hand, such samples typically have high residuals indi-
cating the model is not well-trained on them; on the other
hand, the inner product also needs the residuals to match the
linear dynamics (e.g. this hard sample is not adversarial to
the whole learning process). However, although a data point
with a noisy label has a large residual, it does not satisfy the
second point mentioned above. Thus, we expect those noisy
data to have a low score so that we do not sample them very
often.

Our naive approach above fails to train a class-conditional
diffusion model which can generate decent images. Note
that when we apply the above score to the diffusion task,
yi becomes the noise ϵi added in the forward process and
f(xi; θt) now takes the noisy label and becomes ϵ̃θt(xi, yi).
Although we expect the intuition mentioned before still
makes sense in the way that ϵ̃θt(x, ynoisy) does not match
ϵi and the linear dynamics computed on the majority of
clean data, training the model ϵ̃θ alternately with the class
label or not makes the linear dynamics itself unstable. As a
result, the inner product between the residual and the linear
dynamics can no longer reflect the quality of a sample as we
want. In the future, we plan to conduct experiments where
the linear dynamics is only computed unconditionally so
that we hope the above conjecture can be fixed.

6. Discussion
Our paper represents progress in proposing new architec-
tures and making conditional diffusion models more specific
and more powerful. Yet there still remain some improve-
ments awaiting future work.

Firstly, we show that Pyramid embedding performs well
in FID while Bottleneck does well in IS and NLL on the
MNIST dataset. However, the differences in the experiment
results are not very obvious and may be disturbed by exper-
imental randomness to some extent. Due to the limitation
of our computational power, the number of experiments
conducted in this study may not be sufficient to draw defini-
tive conclusions. In the future, we expect to conduct more
experiments on larger datasets such as CIFAR-10 and Im-
ageNet. We expect more research to further explore those
classes of embedding patterns and clarify the strengths and
weaknesses of each class of embedding patterns.

Secondly, only DDPM models (Ho et al., 2020) are consid-
ered during training and sampling, which rely largely on the
Markov processes. Other state-of-art research such as (Song
et al., 2020) proposes the use of non-Markov processes in
order to increase the sampling speed of the images. We
hope the embedding patterns we propose can be applied to

Class Embeddings enter class-conditional Diffusions models

more types of diffusion models in the future.

Finally, we have assumed that the internal architectures of
our Class Embedding Networks have sufficient representa-
tion power, and our comparative experiments on different
embedding patterns are mostly focused on the networks’
output sizes. Further research may be needed to evaluate the
combined effect of internal architectures and output sizes.

7. Conclusion
We present high-quality image samples using diffusion mod-
els with CNN-Attention mixed U-Net Architecture. We start
with the classifier-free guidance Diffusions model. On the
basis of that research, we further experiment with different
classes of class embedding methods, such as Pyramid em-
bedding, Bottleneck embedding, and Complete Bottleneck
embedding. We have shown that the Pyramid embedding
performs well in terms of the Fréchet Inception Distance
(FID) and therefore image diversity, while Bottleneck per-
forms better in terms of the Inception Score (IS) and the
Negative Log Likelihood (NLL) and therefore image quality.
We encourage future work to confirm that our class embed-
ding framework can be flexibly applied to other conditional
diffusion models and other datasets as well.

References
Bengio, Y., Louradour, J., Collobert, R., and Weston, J.

Curriculum learning. In Proceedings of the 26th annual
international conference on machine learning, pp. 41–48,
2009.

Brock, A., Donahue, J., and Simonyan, K. Large scale GAN
training for high fidelity natural image synthesis. CoRR,
abs/1809.11096, 2018. URL http://arxiv.org/
abs/1809.11096.

Dhariwal, P. and Nichol, A. Diffusion models beat gans
on image synthesis. Advances in Neural Information
Processing Systems, 34:8780–8794, 2021.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. Proceedings of the Inter-
national Conference on Neural Information Processing
Systems, pp. 2672–2680, 2014.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B.,
Klambauer, G., and Hochreiter, S. Gans trained by
a two time-scale update rule converge to a nash equi-
librium. CoRR, abs/1706.08500, 2017. URL http:
//arxiv.org/abs/1706.08500.

Ho, J. and Salimans, T. Classifier-free diffusion guidance.
arXiv preprint arXiv:2207.12598, 2022.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion prob-
abilistic models. CoRR, abs/2006.11239, 2020. URL
https://arxiv.org/abs/2006.11239.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Con-
volutional networks for biomedical image segmentation.
CoRR, abs/1505.04597, 2015. URL http://arxiv.
org/abs/1505.04597.

Salimans, T., Goodfellow, I. J., Zaremba, W., Cheung, V.,
Radford, A., and Chen, X. Improved techniques for
training gans. CoRR, abs/1606.03498, 2016. URL http:
//arxiv.org/abs/1606.03498.

Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. CoRR, abs/1503.03585, 2015.
URL http://arxiv.org/abs/1503.03585.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models. CoRR, abs/2010.02502, 2020. URL
https://arxiv.org/abs/2010.02502.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer vi-
sion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818–2826, 2016.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. CoRR, abs/1706.03762, 2017. URL
http://arxiv.org/abs/1706.03762.

Zhou, T., Wang, S., and Bilmes, J. Curriculum learn-
ing by optimizing learning dynamics. In Banerjee, A.
and Fukumizu, K. (eds.), Proceedings of The 24th In-
ternational Conference on Artificial Intelligence and
Statistics, volume 130 of Proceedings of Machine
Learning Research, pp. 433–441. PMLR, 13–15 Apr
2021. URL https://proceedings.mlr.press/
v130/zhou21a.html.

http://arxiv.org/abs/1809.11096
http://arxiv.org/abs/1809.11096
http://arxiv.org/abs/1706.08500
http://arxiv.org/abs/1706.08500
https://arxiv.org/abs/2006.11239
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1606.03498
http://arxiv.org/abs/1606.03498
http://arxiv.org/abs/1503.03585
https://arxiv.org/abs/2010.02502
http://arxiv.org/abs/1706.03762
https://proceedings.mlr.press/v130/zhou21a.html
https://proceedings.mlr.press/v130/zhou21a.html

