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given by Dr. Mykhaylo Shkolnikov and teaching assistant Chen Ai at Tepper School of Business, Carnegie
Mellon University in Spring 2025. Most materials are inspired by Dr. Steven E. Shreve.

This course uses stochastic calculus to develop models for equity and fixed income derivatives. The role
and limitations of risk-neutral pricing will be discussed. Both risk-neutral and forward measures will be
used, and change of measure associated with change of currency will be explained. Reference texts include
[Shr04], [Shr], etc. The primary prerequisite for this course is Stochastic Calculus for Finance I , which
covers material from [Shr04, §1 – 4]. Familiarity with partial differential equations is also beneficial. Prior
to formally beginning the course, readers are encouraged to work through the practices in Appendix A.

The solutions of the problem sets are given by Rex Liu with help from Mathematics Stack Exchange,
several large language models (primarily GPT o3-mini-high and Gemini 2.5 pro), and friends. If you see
any mistakes or think that the presentation is unclear and could be improved, please send an email to:
rexliu@andrew.cmu.edu. All comments and suggestions are appreciated. Special thanks to Vignesh RSB,
Shujie (Trent) Zhang, and Yuhan (Alex) Jin who reported several mistakes and typos in the draft version of
this document.

Notations

Throughout these notes, we use the following notation:

• X(t) denotes a stochastic process. For a function f(t, x) we denote partial derivatives by

ft =
∂f

∂t
, fx =

∂f

∂x
, etc.

• A stochastic integral is written as

X(t) =

∫ t

0

∆(u) dW (u),

so that in differential notation,
dX(t) = ∆(t) dW (t).

• The quadratic variation of X(t) is given by

[X,X](t) =

∫ t

0

∆(u)2 du,

which in differential form is written as

dX(t) dX(t) = ∆(t)2 dt.

• A key aspect of Itô calculus is the multiplication table for the differentials. In particular,

dt dW (t)
dt 0 0

dW (t) 0 dt

This table encapsulates the fact that the product of two dt terms (or dt with dW (t)) is negligible, while
dW (t) · dW (t) is of order dt.

https://mykhaylo.princeton.edu/
https://www.linkedin.com/in/chen-ai-9a270a274/
https://www.math.cmu.edu/users/shreve/
https://www.math.cmu.edu/~gautam/sj/teaching/2021-22/944-scalc-finance1/pdfs/notes-tablet.pdf
https://math.stackexchange.com/
mailto:
https://www.linkedin.com/in/vrsb/
https://www.linkedin.com/in/trent-zhang-8ba7751a6/
https://www.linkedin.com/in/yuhan-j-8ba643226/


Contents

1 Lecture Notes 1
1.1 A review of the big theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Itô’s formula for functions of two stochastic processes . . . . . . . . . . . . . . . . . . 1
1.1.2 Martingale representation theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Lévy’s characterization of Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.4 Girsanov’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.5 General models: the Brownian framework . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Pricing in the Markovian framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.1 Stochastic differential equations and the Markov property . . . . . . . . . . . . . . . . 17
1.2.2 Derivation of pricing partial differential equations (PDEs) . . . . . . . . . . . . . . . . 17
1.2.3 Boundary conditions for the pricing PDE . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.4 Kolmogorov’s equations and Dupire’s formula . . . . . . . . . . . . . . . . . . . . . . . 27

1.3 Fixed income models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.3.1 Yield curve and forward interest rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.3.2 The Ho-Lee short rate model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.3.3 Heath-Jarrow-Morton (HJM) framework . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.3.4 Forward contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.3.5 Black’s formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
1.3.6 Secured overnight funding rate (SOFR) . . . . . . . . . . . . . . . . . . . . . . . . . . 56
1.3.7 Futures contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

1.4 Financing portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
1.4.1 Self-financing portfolio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
1.4.2 Funding and collateral considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

1.5 Foreign and domestic risk-neutral measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
1.5.1 Domestic risk-neutral measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
1.5.2 Foreign risk-neutral measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

1.6 Course summmary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2 Problem Sets 85
2.1 A review of the big theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.1.1 Decorrelating two correlated Brownian motions . . . . . . . . . . . . . . . . . . . . . . 85
2.1.2 Radon-Nikodym derivative process in a binomial model . . . . . . . . . . . . . . . . . 87
2.1.3 Change of measure for a normal random variable . . . . . . . . . . . . . . . . . . . . . 90
2.1.4 Quotient of martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

2.2 Connection with PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
2.2.1 Binomial Markov process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
2.2.2 Four-step procedure and Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . 97
2.2.3 Corridor option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2.2.4 Change of measure to price an Asian option . . . . . . . . . . . . . . . . . . . . . . . . 101

2.3 Kolmogorov’s equations and Dupire’s formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
2.3.1 Stochastic volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

v



vi CONTENTS

2.3.2 Kolmogorov forward equation for an exponential martingale . . . . . . . . . . . . . . . 112
2.3.3 Application of Dupire’s formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
2.3.4 Black-Scholes with nonrandom time-depenent volatility . . . . . . . . . . . . . . . . . 118

2.4 The Hull-White spot rate model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
2.4.1 Solving the Hull-White stochastic differential equation . . . . . . . . . . . . . . . . . . 119
2.4.2 Zero-coupon bond prices in the Hull-White model . . . . . . . . . . . . . . . . . . . . 120
2.4.3 Matching the initial yield curve in the Hull-White model . . . . . . . . . . . . . . . . . 122
2.4.4 Bond volatility, forward interest rates, and forward measure in the Hull-White model . 124
2.4.5 Interest rate caplet in the Hull-White model . . . . . . . . . . . . . . . . . . . . . . . . 126
2.4.6 Hedging with futures in the Hull-White model . . . . . . . . . . . . . . . . . . . . . . 127

2.5 Secured overnight funding rate (SOFR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
2.5.1 SOFR caplet in the Ho-Lee model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
2.5.2 Swaps measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

2.6 Forward, futures, and foreign exchange (FX) . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
2.6.1 Hedging with futures and different interest rate on margin account . . . . . . . . . . . 134
2.6.2 FX call with funding costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
2.6.3 Forward exchange rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
2.6.4 Hedging multi-currency cashflows with various FX options . . . . . . . . . . . . . . . . 140

A Preliminary Review Sessions 143
A.1 Itô calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.1.1 Itô integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
A.1.2 Itô’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.2 Information and conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.3 Change of measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

B Exams 157
B.1 Midterm of spring 2025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
B.2 Final of spring 2025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160



Chapter 1

Lecture Notes

1.1 A review of the big theorems
Reference: [Shr04, §4.6, 5.1 – 5.4].

“All models are wrong, but some are useful.”

We recall five fundamental theorems which play a central role in stochastic calculus and financial mathe-
matics:

1. Martingale Representation Theorem
2. Lévy’s Theorem (Characterization of Brownian Motion)
3. Girsanov’s Theorem
4. Fundamental Theorems of Asset Pricing

1.1.1 Itô’s formula for functions of two stochastic processes
Let X(t) and Y (t) be defined by

X(t) =

∫ t

0

∆(u) dW1(u), Y (t) =

∫ t

0

Γ(u) dW2(u),

where W1 and W2 are Brownian motions (possibly correlated). If f(t, x, y) is a function that is twice
continuously differentiable in x and y and once in t, then Itô’s formula gives

df(t,X(t), Y (t))

= ft(t,X(t), Y (t)) dt+ fx(t,X(t), Y (t)) dX(t) + fy(t,X(t), Y (t)) dY (t)

+
1

2
fxx(t,X(t), Y (t)) dX(t)dX(t) +

1

2
fyy(t,X(t), Y (t)) dY (t)dY (t)

+ fxy(t,X(t), Y (t)) dX(t)dY (t).

Using the rules from the multiplication table, note that

dX(t)dX(t) = ∆(t)2 dt, dY (t)dY (t) = Γ(t)2 dt.

If the correlation between W1 and W2 is given by ρ, then

dX(t)dY (t) = ∆(t)Γ(t) dW1(t)dW2(t) = ∆(t)Γ(t)ρ dt.

Example 1.1.1. Consider f(t, x, y) = xy. For the function f(t, x, y) = xy, we compute:

ft = 0, fx = y, fy = x, fxx = 0, fyy = 0, fxy = 1.

1
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Thus, applying Itô’s formula:

d (X(t)Y (t)) = Y (t) dX(t) +X(t) dY (t) + dX(t)dY (t).

1.1.2 Martingale representation theorem

We recall the martingale representation theorem.

Theorem 1.1.2. Let (Ω,F ,P) be a probability space and let W1,W2, . . . ,Wd be independent Brownian
motions. Denote by {Ft}0≤t≤T the filtration generated by these Brownian motions. Then any square-
integrable martingale M(t) adapted to {Ft} admits the representation

M(t) =M(0) +

d∑
i=1

∫ t

0

∆i(u) dWi(u), 0 ≤ t ≤ T,

where ∆i(u) are predictable processes.

This result is fundamental in financial mathematics because it implies that all sources of uncertainty in
a complete market can be represented as integrals with respect to Brownian motions. In the context of
derivative pricing, the theorem guarantees that any contingent claim (represented as a martingale under the
risk-neutral measure) can be replicated by a dynamic trading strategy in the underlying assets.

1.1.3 Lévy’s characterization of Brownian motion

Theorem 1.1.3 (Lévy). Let M1(t) and M2(t) be two continuous martingales with M1(0) = M2(0) = 0
satisfying

⟨M1⟩(t) = t, ⟨M2⟩(t) = t,

and with zero cross-variation,
⟨M1,M2⟩(t) = 0.

Then M1(t) and M2(t) are independent standard Brownian motions.

We give a brief outline of the proof using Itô’s formula.

Proof. Let f(t, x, y) be a sufficiently smooth function. Applying Itô’s formula to f(t,M1(t),M2(t)), we obtain

df(t,M1(t),M2(t))

= ft(t,M1(t),M2(t)) dt+ fx(t,M1(t),M2(t)) dM1(t) + fy(t,M1(t),M2(t)) dM2(t)

+
1

2
fxx(t,M1(t),M2(t)) d⟨M1⟩(t) +

1

2
fyy(t,M1(t),M2(t)) d⟨M2⟩(t)

+ fxy(t,M1(t),M2(t)) d⟨M1,M2⟩(t).

Using the given quadratic variation properties:

d⟨M1⟩(t) = dt, d⟨M2⟩(t) = dt, d⟨M1,M2⟩(t) = 0,

the formula simplifies to

df(t,M1(t),M2(t)) =

(
ft +

1

2
fxx +

1

2
fyy

)
dt+ fx dM1(t) + fy dM2(t).

Integrate from 0 to T to obtain

f(T,M1(T ),M2(T )) = f(0, 0, 0) +

∫ T

0

(
ft +

1

2
fxx +

1

2
fyy

)
dt+

∫ T

0

fx dM1(t) +

∫ T

0

fy dM2(t).
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Taking expectations and noting that the stochastic integrals have zero mean yields

E [f(T,M1(T ),M2(T ))] = f(0, 0, 0) + E

[∫ T

0

(
ft +

1

2
fxx +

1

2
fyy

)
dt

]
.

Now, choose the test function

f(t, x, y) = exp

(
αx+ βy − 1

2
(α2 + β2)t

)
,

which satisfies
ft +

1

2
fxx +

1

2
fyy = 0 for all α, β ∈ R.

Thus,

E
[
exp

(
αM1(T ) + βM2(T )−

1

2
(α2 + β2)T

)]
= 1,

or equivalently,

E [exp (αM1(T ) + βM2(T ))] = exp

(
1

2
(α2 + β2)T

)
.

This is exactly the moment generating function of two independent normal random variables with mean 0
and variance T . Hence, M1(T ) and M2(T ) are independent standard Brownian motions.

1.1.4 Girsanov’s theorem
In practice, one often needs to change the probability measure from the physical (or real-world) measure to
a risk-neutral (or forward) measure. Girsanov’s theorem provides the framework for such transformations.

A discrete example

In a discrete-time setting, we illustrate these ideas using a simple binomial model. Consider a model based
on three independent coin tosses. For each toss i = 1, 2, 3, let:

• H (“head”) occur with probability pi under the physical measure P,

• T (“tail”) occur with probability qi = 1− pi.

Under a change of measure, the probabilities become p̃i for heads and q̃i = 1− p̃i for tails. For instance,

p1 → p̃1, p2 → p̃2, p3 → p̃3.

A typical outcome is a sequence such as HHT , TTH, etc. One may, for example, let

X := number of heads in the first two tosses.

Under P, one has
P(X = 2) = p1p2, P(X = 1) = . . . , P(X = 0) = . . .

Details for the cases X = 1 and X = 0 are analogous.

For a given outcome ω = (ω1, ω2, ω3) ∈ Ω, the Radon-Nikodym derivative, which transforms the physical
measure P into the risk-neutral measure P̃, is defined as

Z3(ω) =
P̃(ω)
P(ω)

.

For example:

• If ω = HHH, then

Z3(HHH) =
p̃1p̃2p̃3
p1p2p3

.
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• If ω = HHT , then

Z3(HHT ) =
p̃1p̃2q̃3
p1p2q3

.

Define the process {Zn}3n=0 by taking conditional expectations:

Zn := E [Z3 | Fn] , n = 0, 1, 2, 3,

with the initial value
Z0 = E[Z3].

This process is a martingale with respect to the natural filtration {Fn} under P; that is,

E [Zn+1 | Fn] = Zn.

For example, using the tower property,

E [Z3 | F1] = E [E [Z3 | F2] | F1] = Z1.

In certain cases the conditional density may be computed explicitly. For instance, if the first two outcomes
are HH, one finds

Z2(HH) =
p̃1p̃2
p1p2

,

since regardless of the outcome of the third toss, p̃3 + q̃3 = 1.

For any F3-measurable random variable X, the expectation under the new measure P̃ is given by

Ẽ[X] =
∑
ω∈Ω

P̃(ω)X(ω) =
∑
ω∈Ω

Z3(ω)P(ω)X(ω) = E[Z3X].

Similarly, the Bayes rule for conditional expectations under the measure change is

Ẽ[X | Fs] =
1

Zs
E[ZtX | Fs],

for any 0 ≤ s < t ≤ 3. In particular, for s = 1 and t = 2 one obtains

Ẽ[X | F1] =
1

Z1
E[Z2X | F1].

This formula is fundamental when pricing derivatives under the risk-neutral measure since it relates the
conditional expectation under the new measure to that under the original measure, adjusted by the density
process.

End of Lecture 1

(Recap) Recall that under the measure change we have

P̃ (ω1, ω2, ω3) = Z3 (ω1, ω2, ω3)P (ω1, ω2, ω3) .

Thus, for any event A ⊆ Ω,

P̃(A) =
∑

ω1,ω2,ω3∈A

P̃ (ω1, ω2, ω3)

=
∑

ω1,ω2,ω3∈A

Z3 (ω1, ω2, ω3)P (ω1, ω2, ω3) = E [Z3 · 1A] .

The Radon-Nikodym derivative Z3 satisfies the following:

Z3 > 0 almost surely,
E [Z3] = 1.
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For each i = 0, 1, 2, 3, define
Zi = E [Z3 | Fi] ,

so that {Zi}3i=0 forms a martingale under P. This martingale property is crucial, as it implies for any
Fj-measurable random variable X (with j ≥ i),

Ẽ[X] = E [Zi ·X] ,

and more generally, the Bayes rule for conditional expectations under the measure change becomes

Ẽ [X | Fi] =
1

Zi
E [Zj ·X | Fi] ,

for any 0 ≤ i < j ≤ 3 and X Fj-measurable.

Girsanov’s theorem in continuous time

Let (Ω,F ,P) be a probability space equipped with a filtration {F(t)}0≤t≤T̄ . Suppose there exists a random
variable Z(T̄ ) satisfying

Z(T̄ ) > 0 a.s. and E
[
Z(T̄ )

]
= 1.

Then one may define a new probability measure P̃ on F(T̄ ) by

P̃(A) = E
[
Z(T̄ ) · 1A

]
, ∀A ∈ F(T̄ ).

For 0 ≤ t ≤ T̄ , define the process
Z(t) = E

[
Z(T̄ ) | F(t)

]
,

so that {Z(t)}0≤t≤T̄ is a P-martingale. In particular, for any F(T̄ )-measurable random variable X one has

Ẽ[X] = E
[
X · Z(T̄ )

]
.

Theorem 1.1.4 (Bayes’ rule in change-of-measure). Suppose that P̃ and P are two probability measures that
are equivalent on FT with Radon-Nikodym derivative

Z(T ) =
dP̃
dP

∣∣∣∣∣
FT

,

and denote

Z(t) =
dP̃
dP

∣∣∣∣∣
Ft

.

Then for any integrable random variable X and any t ≤ T , the conditional expectation under P̃ is given by

Ẽ[X | Ft] =
E [Z(T )X | Ft]

Z(t)
.

(Equivalence of measure) Since Z(T̄ ) > 0 a.s., the new measure P̃ is equivalent to P. In fact, one may recover
P from P̃ via

P(A) = Ẽ
[

1

Z(T̄ )
· 1A

]
, ∀A ∈ F(T̄ ).

Thus, if P(A) = 0 (or 1) then necessarily P̃(A) = 0 (or 1), and if P(A) ∈ (0, 1) then P̃(A) ∈ (0, 1).
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Girsanov’s theorem for one-dimensional Brownian motion

Let {F(t)}0≤t≤T̄ be a filtration and let W (t) be a one-dimensional P-Brownian motion (BM). For any
F(t)-adapted process θ(t), define

Z(T̄ ) := exp

(
−
∫ T̄

0

θ(u) dW (u)− 1

2

∫ T̄

0

θ(u)2 du

)
.

Then, by construction, Z(T̄ ) > 0 almost surely and

E
[
Z(T̄ )

]
= 1.

For 0 ≤ t ≤ T̄ one similarly defines

Z(t) = E
[
Z(T̄ ) | F(t)

]
= exp

(
−
∫ t

0

θ(u) dW (u)− 1

2

∫ t

0

θ(u)2 du

)
.

(Martingale property) Set

Y (t) := −
∫ t

0

θ(u) dW (u)− 1

2

∫ t

0

θ(u)2 du,

so that Z(t) = eY (t). Applying Itô’s formula to the function f(y) = ey (with f ′(y) = ey and f ′′(y) = ey)
yields

deY (t) = eY (t) dY (t) +
1

2
eY (t) d⟨Y ⟩t.

Since
dY (t) = −θ(t) dW (t)− 1

2
θ(t)2 dt

and the quadratic variation is
d⟨Y ⟩t = θ(t)2 dt,

we obtain

deY (t) = −eY (t)θ(t) dW (t)− 1

2
eY (t)θ(t)2 dt+

1

2
eY (t)θ(t)2 dt = −eY (t)θ(t) dW (t).

Thus, Z(t) = eY (t) is a P-martingale.

(Transformation of BM ) Under the new measure P̃ defined via Z(T̄ ), the process

W̃ (t) =W (t) +

∫ t

0

θ(u) du

plays a central role. In differential form,

dW̃ (t) = dW (t) + θ(t) dt.

Using the Bayes rule and the properties of the density process Z(t), one can show that W̃ (t) is a standard
BM under P̃; that is,

Ẽ
[
W̃ (t) | F(s)

]
= W̃ (s), for all 0 ≤ s < t ≤ T̄ .

A key step in this verification is establishing that the process W̃ (t)Z(t) is a P-martingale.

(Extension to the multidimensional case) For a d-dimensional BM W(t) = (W1(t), . . . ,Wd(t)) and an adapted
process θ(t) = (θ1(t), . . . , θd(t)), one defines

Z(T̄ ) = exp

(
−

d∑
i=1

∫ T̄

0

θi(u) dWi(u)−
1

2

d∑
i=1

∫ T̄

0

θi(u)
2 du

)
.

Then, as before, Z(T̄ ) > 0 a.s. and E[Z(T̄ )] = 1; the corresponding change of measure procedure and
transformation of the BMs follow analogously.
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Girsanov’s theorem in the Black-Scholes model

We consider a financial market consisting of a risky asset and a risk-free asset. The dynamics of the risky
asset S(t) are given by

dS(t) = α(t)S(t) dt+ σS(t) dW (t),

with σ > 0 (constant) and α(t) an adapted process,

where S(t) represents the adapted price of the risky asset. The risk-free asset is given by

1$ −→ ert$, t ≥ 0,

meaning that an investment of 1 dollar grows to ert dollars at time t1.

(Discrete trading) Let X(tj) denote the portfolio value at trading time tj and let ∆(tj−1) denote the number
of shares held in the risky asset at time tj−1. In a discrete setting, the change in the portfolio value over the
interval from a previous trading time to time tj is modeled as

X(tj)−X(tj−1) = ∆(tj−1) (S(tj)− S(tj−1)) + r (X(tj−1)−∆(tj−1)S(tj−1)) (tj − tj−1).

In the limit of continuous trading, the portfolio dynamics become more tractable.

(Continuous trading) Under continuous trading, the evolution of the portfolio value X(t) is governed by

dX(t) = ∆(t) dS(t) + r (X(t)−∆(t)S(t)) dt.

Example 1.1.5 (Hedging a European call option). Consider a European call option with payoff

(S(T )−K)+ .

A hedging strategy consists of an initial capital X(0) and a trading strategy ∆(t) such that the terminal
portfolio value satisfies

X(T ) = (S(T )−K)+ .

One may introduce a pricing function c(t, x) with the terminal condition

c(T, x) = (x−K)+,

and identify
c(t, S(t)) = X(t).

(Delta-hedging strategy) A naive approach would attempt to equate the differentials

dc(t, S(t))
!
= dX(t).

A more effective strategy is to work with the discounted processes. In particular, one imposes

d
(
e−rtc(t, S(t))

)
= d

(
e−rtX(t)

)
.

Using Itô’s formula, the differential of e−rtc(t, S(t)) is computed as

d
(
e−rtc(t, S(t))

)
= e−rt dc(t, S(t)) + c(t, S(t)) d

(
e−rt

)
= e−rt

[
ct dt+ cx dS(t) +

1

2
cxx dS(t)

2

]
+ c(t, S(t)) d

(
e−rt

)
= e−rt

[
ct dt+ cx (α(t)S(t) dt+ σS(t) dW (t)) +

1

2
cxx σ

2S(t)2 dt

]
+ c(t, S(t)) d

(
e−rt

)
.

1This implies that if Y (t) = ert represents the value of non-risky asset at time t, then dY/dt = rert = rY (t); i.e. dY (t) =
rY (t)dt.
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Similarly, for the portfolio process we have

d
(
e−rtX(t)

)
= e−rt dX(t) +X(t) d

(
e−rt

)
= e−rt [∆(t) (α(t)S(t) dt+ σS(t) dW (t)) + r (X(t)−∆(t)S(t)) dt] +X(t) d

(
e−rt

)
.

By equating the coefficients of the dW (t) terms in the two expressions, we obtain

e−rt cx σS(t) = e−rt ∆(t)σS(t).

It immediately follows that
∆(t) = cx(t, S(t)).

This is the delta-hedging rule in the Black-Scholes model.

End of Lecture 2

(Recap) Recall that under the physical measure P the dynamics of the underlying asset S(t) are given by

dS(t) = α(t)S(t) dt+ σS(t) dW (t),

where α(t) is the (possibly time-dependent) drift, σ > 0 is the volatility, and W (t) is a standard Brownian
motion.

For a European call option with payoff
(S(T )−K)+,

we denote by c(t, S(t)) its price at time t. By applying Itô’s formula to c(t, S(t)) we obtain

dc(t, S(t)) = ct dt+ cx dS(t) +
1

2
cxx d⟨S⟩(t),

and since
d⟨S⟩(t) = σ2S(t)2 dt,

this becomes
dc(t, S(t)) =

[
ct + α(t)S(t)cx +

1

2
σ2S(t)2 cxx

]
dt+ σS(t)cx dW (t).

Now consider a replicating portfolio composed of ∆(t) units of the asset and an amount invested in the
risk-free asset (with constant rate r). Its value X(t) satisfies

dX(t) = ∆(t) dS(t) + r (X(t)−∆(t)S(t)) dt.

Matching the dW (t) terms between dc(t, S(t)) and dX(t) requires

σS(t)cx = ∆(t)σS(t),

so that
∆(t) = cx(t, S(t)).

Matching the dt terms then yields

ct + α(t)S(t)cx +
1

2
σ2S(t)2cxx = r (c(t, S(t))− S(t)cx(t, S(t))) .

A rearrangement shows that the call price must satisfy the Black-Scholes partial differential equation (PDE)

ct + rS cx +
1

2
σ2S2cxx − r · c = 0,

with the terminal condition
c(T, S) = (S −K)+.
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(Risk-neutral measure via Girsanov’s theorem) In order to simplify pricing we seek a probability measure
under which the discounted asset price process is a martingale. Under P the asset dynamics are

dS(t) = α(t)S(t) dt+ σS(t) dW (t).

We wish to find an equivalent (risk-neutral) measure P̃ under which the dynamics become

dS(t) = rS(t) dt+ σS(t) dW̃ (t),

with r being the risk-free rate and W̃ (t) a Brownian motion under P̃.

To this end, define the process2

θ(t) =
α(t)− r

σ
.

Then set
dW̃ (t) = dW (t) + θ(t) dt.

Substituting into the dynamics gives

dS(t) = α(t)S(t) dt+ σS(t)
[
dW̃ (t)− θ(t) dt

]
= [α(t)− σθ(t)]S(t) dt+ σS(t)dW̃ (t).

Since
α(t)− σθ(t) = α(t)− (α(t)− r) = r,

we obtain the desired risk-neutral dynamics:

dS(t) = rS(t) dt+ σS(t)dW̃ (t).

Girsanov’s theorem guarantees that the process

Z(T ) = exp

(
−
∫ T

0

θ(u) dW (u)− 1

2

∫ T

0

θ(u)2 du

)

is a P-martingale with E[Z(T )] = 1. We then define the risk-neutral measure P̃ by

P̃(A) = E [Z(T )1A] ,

for all A ∈ F(T ).

Under P̃ the discounted asset price process

S̃(t) = e−rtS(t)

is a martingale, and the pricing of derivatives is given by the risk-neutral valuation formula.

Example 1.1.6 (Black-Scholes). Under the risk-neutral measure P̃ the European call price is given by

c(t, S(t)) = Ẽ
[
e−r(T−t)(S(T )−K)+ | Ft

]
.

Since the SDE
dS(t) = rS(t) dt+ σS(t)dW̃ (t)

is linear, we can solve it by applying Itô’s formula to logS(t). A short computation yields

d logS(t) =

(
r − 1

2
σ2

)
dt+ σ dW̃ (t).

2Note that it coincides with the definition of the Sharpe ratio (the excess return over the risk-free rate divided by the
standard deviation of returns).



10 Ch.1. Lecture Notes

Integrating from t to T we obtain

logS(T ) = logS(t) +

(
r − 1

2
σ2

)
(T − t) + σ

(
W̃ (T )− W̃ (t)

)
.

Thus,

S(T ) = S(t) exp

[(
r − 1

2
σ2

)
(T − t) + σ

√
T − t Y

]
,

where
Y ∼ N(0, 1) under P̃.

Setting x = S(t) and performing the standard expectation calculation, we arrive at the Black-Scholes formula:

c(t, x) = xN(d+)−Ke−r(T−t)N(d−),

with

d± =
ln(x/K) + (r ± 1

2σ
2)(T − t)

σ
√
T − t

,

and where N(·) denotes the cumulative distribution function of the standard normal distribution.

1.1.5 General models: the Brownian framework
We consider a general financial market model defined on a probability space (Ω,F ,P) with independent
standard Brownian motions W1, . . . ,Wd. The primary asset prices Si(t) for i = 1, . . . ,m evolve according to

dSi(t) = Si(t)αi(t) dt+ Si(t)

d∑
j=1

σij(t) dWj(t),

and there is an interest rate process R(t). All processes are assumed to be adapted.

(Risk-free asset and discount process) The risk-free asset is given by

1 $ −→ e
∫ t
0
R(u) du $ at time t.

Define the discount process by
D(t) = e−

∫ t
0
R(u) du.

Under a risk-neutral measure P̃, the discounted primary asset prices D(t)Si(t) for i = 1, . . . ,m are required
to be martingales. (It then follows that D(t)X(t) is also a martingale for any portfolio value X(t).)

By applying the product rule,

d (D(t)Si(t)) = D(t) dSi(t) + Si(t) dD(t)

= D(t)

Si(t)αi(t) dt+ Si(t)

d∑
j=1

σij(t) dWj(t)

+ Si(t) dD(t)︸ ︷︷ ︸
···(t)

.

The condition that D(t)Si(t) is a P̃-martingale implies that its drift term must vanish; that is, under P̃

D(t)Si(t) has only the stochastic integral term D(t)Si(t)

d∑
j=1

σij(t) dW̃j(t).

(Market price of risk) For the discounted price D(t)Si(t) to be a P̃-martingale, it is necessary that

αi(t) dt+

d∑
j=1

σij(t) dWj(t)−R(t) dt
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has no drift under P̃. This requirement leads to (recall that dW̃ (t) = dW (t) + θ(t) dt)

αi(t)−R(t) =

d∑
j=1

σij(t) θj(t)︸︷︷︸
market price of risk

,

for i = 1, . . . ,m. These m equations, with d unknown processes θj(t), are known as the market price of risk
(MPR) equations.

Theorem 1.1.7 (First fundamental theorem of asset pricing (FTAP)). A model is arbitrage free if and only
if there exists a risk-neutral probability measure P̃ if and only if the MPR equations

αi(t)−R(t) =

d∑
j=1

σij(t) θj(t), i = 1, . . . ,m,

have a solution.

Example 1.1.8. Consider
dS1(t) = α1S1(t) dt+ σ1S1(t) dW1(t),

dS2(t) = α2S2(t) dt+ σ2S2(t) dW1(t).

Here both assets are driven by the same Brownian motion. The claim is that

arbitrage free ⇐⇒ Sharpe ratio1 = Sharpe ratio2;

that is, the model is arbitrage free if and only if the two assets have the same market price of risk.

Completeness means that every contract written in terms of the primary assets can be replicated by a
portfolio in these primary assets. For a portfolio with positions ∆1(t), . . . ,∆m(t), the portfolio value X(t)
evolves as

dX(t) =

m∑
i=1

∆i(t) dSi(t)−

(
X(t)−

m∑
i=1

∆i(t)Si(t)

)
R(t) dt.

An arbitrage opportunity is a portfolio with X(0) = 0 and

X(T ) ≥ 0, X(T ) > 0 with positive probability.

(One rules out arbitrage if under some equivalent measure P̂ the discounted portfolio value D(t)X(t) is a
martingale.)

Theorem 1.1.9 (Second FTAP). A model is complete if and only if the risk-neutral measure P̃ is unique
if and only if the MPR equations have a unique solution, i.e., there exists a unique set of processes
θ1(t), . . . , θd(t) such that

αi(t)−R(t) =

d∑
j=1

σij(t) θj(t), 1 ≤ i ≤ m.

End of Lecture 3

We now present a counterexample to the completeness of a financial market. Example 1.1.10 illustrates that
even if an asset (such as a stock) has dynamics similar to those in the Black-Scholes framework, introducing
an additional source of randomness (here, via a stochastic interest rate) may render the market incomplete.
In an incomplete market, there exist infinitely many risk-neutral measures and not every contingent claim
can be perfectly replicated by trading in the primary assets.

Example 1.1.10 (Incomplete market). We consider a market with two primary sources of uncertainty
driven by independent Brownian motions. The dynamics are given by:

dS(u) = αS(u)du+ σ S(u) dW1(u),

dR(u) = µdu+ ν
(
ρ dW1(u) +

√
1− ρ2 dW2(u)

)
, ρ ∈ (−1, 1),

where:
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• S(u) is the asset (stock) price,
• R(u) is the (random) short rate,
• α is the (constant) rate of return of the stock under the physical measure,
• σ > 0 is the volatility of the stock,
• µ and ν are constants for the interest rate dynamics,
• W1(u) and W2(u) are two independent standard Brownian motions.

An investor trading in the risky asset S and investing the remaining wealth at rate R holds a portfolio X(t)
which evolves according to

dX(t) = ∆(t) dS(t) +R(t) [X(t)−∆(t)S(t)] dt,

where ∆(t) denotes the position in the stock.

(Risk-neutral measure perspective) To price derivatives, we introduce a discount process that reflects the
accumulation of the (stochastic) short rate:

D(t) = exp

{
−
∫ t

0

R(u) du

}
.

The discounted portfolio value is given by D(t)X(t). Using Itô’s product rule,

d (D(t)X(t)) = D(t) dX(t) +X(t) dD(t),

and substituting the dynamics of X(t) and noting that dD(t) = −R(t)D(t)dt, we obtain

d (D(t)X(t)) = D(t) [∆(t)dS(t) +R(t)(X(t)−∆(t)S(t))dt]−R(t)D(t)X(t)dt

= D(t)∆(t) [dS(t)−R(t)S(t)dt] .

Thus, if we can adjust the dynamics of S so that

dS(u) = R(u)S(u)du+ σ S(u)dW̃1(u),

the drift term in the discounted asset dynamics will vanish, and D(t)X(t) becomes a martingale under the
new measure.

This is achieved by introducing the Sharpe ratio

Θ(u) =
α−R(u)

σ
,

and applying Girsanov’s theorem. Under the change of measure defined by the Radon-Nikodym derivative

Z(t) = exp

{
−
∫ t

0

Θ(u) dW1(u)−
1

2

∫ t

0

Θ(u)2 du

}
,

one obtains a new Brownian motion

W̃1(t) =W1(t) +

∫ t

0

Θ(u) du,

so that under the risk-neutral measure P̃,

dS(u) = R(u)S(u)du+ σS(u)dW̃1(u).

Hence, the discounted portfolio value

d (D(t)X(t)) = D(t)∆(t)σS(t)dW̃1(t)

is a martingale, ensuring the model is arbitrage-free, following the first FTAP (Theorem 1.1.7).
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The model becomes incomplete because there is a second source of randomness from W2(u) that does not affect
the stock price dynamics directly. To see this, define a one-parameter family of Radon-Nikodym derivatives
for any arbitrary constant θ̂ ∈ R:

Ẑ(t) = exp

{
−
∫ t

0

Θ(u) dW1(u)− θ̂W2(t)−
1

2

∫ t

0

Θ(u)2 du− 1

2
θ̂2t

}
.

Then, by setting
P̂(A) = E

[
1A Ẑ(T̄ )

]
, ∀A ∈ F(T̄ ),

Girsanov’s theorem ensures that under P̂ the processes

Ŵ1(t) =W1(t) +

∫ t

0

Θ(u) du, Ŵ2(t) =W2(t) + θ̂t

are independent standard Brownian motions. Notice that

Ŵ1(t) = W̃1(t),

so that the stock dynamics remain

dS(u) = R(u)S(u)du+ σS(u)dŴ1(u).

Thus, P̂ is also a risk-neutral measure since the discounted portfolio evolution becomes

d (D(t)X(t)) = D(t)∆(t)σS(t)dŴ1(t).

Because θ̂ can be chosen arbitrarily, there exist infinitely many risk-neutral measures. According to the
second FTAP (Theorem 1.1.9), the existence of more than one risk-neutral measure implies that the market
is incomplete.

(Replication perspective) An equivalent way to see the incompleteness is through replication. Under any
risk-neutral measure (say, P̂), the stock dynamics are given by

dS(u) = R(u)S(u)du+ σS(u)dŴ1(u).

However, the interest rate R(u) still evolves as

dR(u) = µdu+ ν
(
ρ dW1(u) +

√
1− ρ2 dW2(u)

)
,

and after the change of measure the dynamics for R(u) involve both Ŵ1(u) and Ŵ2(u). Since the stock
price S(u) is driven only by Ŵ1(u), any claim (for example, a European call with payoff (S(T )−K)+) will
depend on both S(T ) and R(u). A hedging strategy based solely on trading the stock (and the money market
account) can at best cancel the risk due to Ŵ1(u) (via delta hedging), but the risk associated with Ŵ2(u)
remains unhedged. Consequently, perfect replication of such claims is impossible, confirming the market’s
incompleteness.

End of the first half of Lecture 5

Exercises

Exercise 1.1.11 (Decorrelating correlated BMs). Consider B1(t), . . . , Bn(t) adapted to the same filtration
F(t), with

dBi(t) dBj(t) = ρij dt

where ρi,i = 1 since Bi(t) are Brownian motions.



14 Ch.1. Lecture Notes

Define the correlation matrix C as

C =


1 ρ1,2 · · · ρ1,n
ρ2,1 1 · · · ρ2,n
...

...
. . .

...
ρn,1 ρn,2 · · · 1


Note that C is symmetric. Let B⃗(t) = (B1(t), . . . , Bn(t))

⊤. Then we can express the quadratic covariation
in matrix form as

dB⃗(t) dB⃗(t)⊤ = C dt

For any vector V = (v1, . . . , vn)
⊤ ∈ Rn, the quadratic variation of V ⊤B⃗ satisfies

d[V ⊤B⃗, V ⊤B⃗]t =

n∑
i=1

vi dBi(t) ·
n∑

j=1

vj dBj(t)

=

n∑
i=1

n∑
j=1

vivj dBi(t) dBj(t) =

n∑
i=1

n∑
j=1

vivj ρij dt = V ⊤CV dt

Since quadratic variation is non-decreasing, we have V ⊤CV ≥ 0 for all V ∈ Rn, which implies that C is
positive semidefinite.

By the spectral theorem, C has n orthogonal eigenvectors v⃗1, . . . , v⃗n with corresponding non-negative eigen-
values λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Without loss of generality, we can assume the eigenvectors are normalized
so that

v⃗⊤i v⃗j = δij =

{
1 if i = j

0 if i ̸= j

We can diagonalize C as
C = PΛP⊤

where P = [v⃗1 | v⃗2 | · · · | v⃗n] is the matrix of eigenvectors and Λ = diag(λ1, λ2, . . . , λn) is the diagonal matrix
of eigenvalues. From the orthonormality of eigenvectors, we have PP⊤ = P⊤P = I.

If any λi = 0, then rank(C) < n, which would mean that some Brownian motion could be expressed as a
linear combination of others. To ensure full independence, we assume λi > 0 for all i.

Now consider the process W⃗ (t) defined by

W⃗ (t) = Λ− 1
2P⊤B⃗(t)

We claim that W⃗ (t) = (W1(t), . . . ,Wn(t))
⊤ consists of independent Brownian motions. To verify this using

Lévy’s characterization theorem, we need to check:

• Wi(0) = 0 for all i
• Wi(t) has continuous sample paths
• Wi(t) is a martingale
• dW⃗ (t) dW⃗ (t)⊤ = I dt

The first three conditions follow directly from the properties of B⃗(t) and the linear transformation. For the
fourth condition, we compute:

dW⃗ (t) dW⃗ (t)⊤ = Λ− 1
2P⊤dB⃗(t) dB⃗(t)⊤PΛ− 1

2 = Λ− 1
2P⊤C dtPΛ− 1

2

= Λ− 1
2P⊤PΛP⊤PΛ− 1

2 dt = Λ− 1
2ΛΛ− 1

2 dt = I dt
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Therefore, by Lévy’s characterization theorem, Wi(t) are independent standard Brownian motions. Con-
versely, we can express the original correlated Brownian motions as

B⃗(t) = PΛ
1
2 W⃗ (t)

which provides a way to construct correlated Brownian motions from independent ones.

Exercise 1.1.12 (Change of measure on exponential r.v.). Recall that an exponential random variable with
parameter λ > 0 has cumulative distribution function Fλ(x) = 1− e−λx for x ≥ 0.

The inverse of this function is given by F−1
λ (w) = 1

λ ln
(

1
1−w

)
for 0 ≤ w ≤ 1.

Let (Ω,F ,P) be a probability space where Ω = [0, 1], F = B([0, 1]) is the Borel σ-algebra on [0, 1], and P is
the Lebesgue measure on [0, 1], i.e., P([a, b]) = b− a for 0 ≤ a ≤ b ≤ 1.

Define the random variable X : Ω → R+ by X(w) = F−1
λ (w) for w ∈ Ω.

Claim. X is an exponential random variable with parameter λ.

Proof. For any b ≥ 0, we have

X(w) ≤ b ⇐⇒ 1

λ
ln

(
1

1− w

)
≤ b ⇐⇒ ln

(
1

1− w

)
≤ λb

⇐⇒ 1

1− w
≤ eλb ⇐⇒ 1− w ≥ e−λb ⇐⇒ w ≤ 1− e−λb

Therefore,
FX(b) = P({w ∈ Ω : X(w) ≤ b})

= P([0, 1− e−λb]) = 1− e−λb

which is the CDF of an exponential random variable with parameter λ.

Now, let λ̃ > 0 be another parameter. Define the random variable Z : Ω → R+ by

Z(w) =
λ̃

λ
e(λ−λ̃)X(w)

We verify that

• Z > 0: since λ̃ > 0, λ > 0, and the exponential function is positive.
• E[Z] = 1 where

E[Z] =
∫ 1

0

Z(w)dw

=
λ̃

λ

∫ 1

0

exp

{
(λ− λ̃)

1

λ
ln

(
1

1− w

)}
dw :

Making the substitution x = F−1
λ (w) = 1

λ ln
(

1
1−w

)
, we have w = 1 − e−λx and dw = λe−λxdx. The

limits of integration change from w ∈ [0, 1] to x ∈ [0,∞). Thus,

E[Z] =
λ̃

λ

∫ ∞

0

exp{(λ− λ̃)x}λe−λxdx

= λ̃

∫ ∞

0

e−λ̃xdx = λ̃ · 1
λ̃
= 1,

as desired.
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Since Z is a non-negative random variable with E[Z] = 1, we can define a new probability measure P̃ on
(Ω,F) by

P̃(A) = E[1A · Z] =
∫
A

Z(w)dw, A ∈ F

For any interval [a, b] ⊂ [0, 1], we compute

P̃([a, b]) =
∫ b

a

Z(w)dw =
λ̃

λ

∫ b

a

exp

{
(λ− λ̃)

1

λ
ln

(
1

1− w

)}
dw

Using the same substitution as before, we get

P̃([a, b]) =
λ̃

λ

∫ F−1
λ (b)

F−1
λ (a)

exp{(λ− λ̃)x}λe−λxdx

= λ̃

∫ F−1
λ (b)

F−1
λ (a)

e−λ̃xdx =
[
−e−λ̃x

]F−1
λ (b)

F−1
λ (a)

= e−λ̃F−1
λ (a) − e−λ̃F−1

λ (b)

Substituting F−1
λ (w) = 1

λ ln
(

1
1−w

)
, we obtain

P̃([a, b]) = exp

{
−λ̃ · 1

λ
ln

(
1

1− a

)}
− exp

{
−λ̃ · 1

λ
ln

(
1

1− b

)}
= exp

{
− λ̃
λ
ln

(
1

1− a

)}
− exp

{
− λ̃
λ
ln

(
1

1− b

)}
= (1− a)

λ̃
λ − (1− b)

λ̃
λ

Finally, we show that under the probability measure P̃, the random variable X follows an exponential distri-
bution with parameter λ̃.

For any b ≥ 0, we have

P̃({w ∈ Ω : X(w) ≤ b}) = P̃([0, 1− e−λb]) = E[1[0,1−e−λb] · Z] = E[1{X≤b} · Z]

We can rewrite this expectation as an integral with respect to the density function of X under P:

P̃({w ∈ Ω : X(w) ≤ b}) = λ̃

λ

∫ ∞

0

1[0,b](x)e
(λ−λ̃)xfX(x)dx

=
λ̃

λ

∫ b

0

e(λ−λ̃)xλe−λxdx = λ̃

∫ b

0

e−λ̃xdx

=
[
−e−λ̃x

]b
0
= 1− e−λ̃b

Therefore, X is an exponential random variable with parameter λ̃ under the probability measure P̃.

End of Recitation 1

1.2 Pricing in the Markovian framework
Reference: [Shr04, §6].

In this section we develop the Markovian framework for option pricing. We begin by introducing stochastic
differential equations (SDEs) and the Markov property, which ensures that the future evolution of a process
depends solely on its current state. This property underpins our derivation of pricing partial differential
equations (PDEs) via a systematic four-step procedure based on martingale arguments. We then illustrate the
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method through examples—ranging from the standard Black-Scholes and local volatility models to the more
intricate Asian option pricing problem. Finally, we explore Kolmogorov’s forward and backward equations,
culminating in the derivation of Dupire’s formula—a powerful tool that links the observed market surface of
European option prices to the local volatility function. This chapter lays the theoretical groundwork for the
numerical methods used in modern derivative pricing and calibration.

1.2.1 Stochastic differential equations and the Markov property
We begin with the definition of a stochastic differential equation (SDE). Consider a stochastic process X(u)
that satisfies an equation of the form:

dX(u) = β(u,X(u))du+ γ(u,X(u))dW̃ (u)

where W̃ (u) is a standard Brownian motion, and β(u,X(u)) and γ(u,X(u)) are deterministic functions of
time u and the process value X(u). This specific structure is crucial, as it restricts the source of randomness
to only the Brownian motion W̃ (u).

The key consequence of this formulation is the Markov property : the future evolution of the process depends
only on its current state, not on its past trajectory. More precisely, if we know X(u) = x at some time u,
then the future evolution of X depends only on this current value x and not on the path taken to reach this
point.

This property is particularly valuable for simulation purposes. When generating Monte Carlo paths of the
process from a given time point u forward, we only need to know the value X(u) and not the entire history
of the process. This significantly simplifies numerical implementations.

The Markov property allows us to characterize the future distribution of the process through transition
probabilities. For any time T > u, the conditional distribution of X(T ) given X(u) = x can be described by
the conditional cumulative distribution function (CDF):

d

dy
P̃(X(T ) ≤ y | X(u) = x) =: p(u, x;T, y) pdf in y

where p(u, x;T, y) represents the transition probability density function (PDF) for moving from state x at
time u to state y at time T . This transition PDF satisfies the following normalization condition:∫

p(u, x;T, y) dy = 1

where the integration is over all possible values of y that the process can take at time T .

1.2.2 Derivation of pricing partial differential equations (PDEs)
In the context of option pricing, we define the pricing function g(u, x) as the expected value of a payoff
function h applied to the process at the terminal time T , conditional on the process being at level x at time
u:

g(u, x) := Ẽ[h(X(T )) | X(u) = x]

In a model with zero interest rate, if X represents the underlying asset price, then g(u, x) is precisely the
price of a European option with payoff h at time u when the underlying asset is at level x.

The pricing function can be expressed as an integral using the transition PDF:

g(u, x) =

∫
h(y) p(u, x;T, y) dy

where the integration bounds depend on the range of possible values for the process X.

To compute the pricing function g(u, x), we can derive a partial differential equation (PDE) that g must
satisfy. This is accomplished through the following four-step procedure:
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1. Find a martingale
2. Take its differential
3. Set the dt-terms to 0
4. Replace random variables by real variables

The advantage of obtaining a PDE is that it can be solved using established numerical methods such as finite
differences, which are often more tractable than working directly with the original stochastic differential
equation.

Let us now implement this procedure step by step.

Step 1: Find a martingale

We begin by constructing a martingale related to our pricing function. Consider the process

g(u,X(u)) = Ẽ[h(X(T )) | X(u)]

Using the Markov property, we can rewrite this as

g(u,X(u)) = Ẽ[h(X(T )) | F(u)]

This is a martingale with respect to the filtration {F(t)}. To verify this, let ũ < u and compute

Ẽ[g(u,X(u)) | F(ũ)] = Ẽ[Ẽ[h(X(T )) | F(u)] | F(ũ)]

= Ẽ[h(X(T )) | F(ũ)] = g(ũ, X(ũ))

The second equality follows from the tower property of conditional expectations. This confirms that
{g(u,X(u))}0≤u≤T is indeed a martingale.

Step 2: Take its differential

Now we compute the differential of g(u,X(u)) using Itô’s formula:

dg(u,X(u))

= gu(u,X(u))du+ gx(u,X(u))dX(u) +
1

2
gxx(u,X(u))dX(u)dX(u)

= gu(u,X(u))du+ gx(u,X(u))[β(u,X(u))du+ γ(u,X(u))dW̃ (u)] +
1

2
gxx(u,X(u))γ(u,X(u))2du

=

[
gu(u,X(u)) + β(u,X(u))gx(u,X(u)) +

1

2
γ(u,X(u))2gxx(u,X(u))

]
du

+ gx(u,X(u))γ(u,X(u))dW̃ (u)

Step 3: Set the dt-terms to 0

Since g(u,X(u)) is a martingale, its drift term must be zero:

gu(u,X(u)) + β(u,X(u))gx(u,X(u)) +
1

2
γ(u,X(u))2gxx(u,X(u)) = 0

Step 4: Replace random Variables by real variables

Finally, we replace the random variable X(u) with the real variable x to obtain the PDE:

gu(u, x) + β(u, x)gx(u, x) +
1

2
γ(u, x)2gxx(u, x) = 0

This is the desired pricing PDE. The expression β(u, x)gx(u, x)+ 1
2γ(u, x)

2gxx(u, x) is known as the infinites-
imal generator of the stochastic process X(u).
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1.2.3 Boundary conditions for the pricing PDE

To obtain a unique solution to the pricing PDE, we need to specify appropriate boundary conditions. The
domain of the PDE is typically a rectangular region:

{(u, x) ∈ [0, T ]×X}

where X is the range of possible values for the process X(u) (which depends on the specific model).

u

x

T

Upper boundary condition

0

Lower boundary condition

g = h(x)
(Terminal condition)

Figure 1.2.1: Domain for the pricing PDE in the (u, x) plane

We need to specify boundary conditions on three of the four sides of this domain (see an illustration in
Figure 1.2.1):

1. Terminal condition (at u = T ): This is straightforward since by definition

g(T, x) = h(x)

This follows directly from the definition of g.
2. Boundary conditions (at the extremes of X ): These are more challenging and typically require

careful consideration of the specific problem. For example, in the case of a call option on a non-
negative asset, one might consider:

• At x = 0: If the asset price is zero, the call option is worthless, so g(u, 0) = 0.
• As x→ ∞: For very large asset prices, the call option behaves asymptotically like the asset itself,

so g(u, x) ∼ x−Ke−r(T−u) as x→ ∞.

Without proper specification of these boundary conditions, the PDE has infinitely many solutions. The
correct choice of boundary conditions ensures that the solution corresponds to the true option price.

Examples of the four-step procedure

We now apply the aforementioned framework to specific models, including European options in a local
volatility model and Asian option pricing.

Example 1.2.1 (Local volatility model). The local volatility model extends the standard Black-Scholes
framework by allowing the volatility to be a deterministic function of both time and the current asset price,
rather than a constant. Under the risk-neutral measure P̃, the asset price dynamics are given by:

dS(t) = rS(t)dt+ σ(t, S(t))S(t)dW̃ (t)

where r is the constant risk-free rate, σ(t, S(t)) is the local volatility function, and W̃ (t) is a standard
Brownian motion.



20 Ch.1. Lecture Notes

This model was developed to address the limitations of the constant volatility assumption in the Black-Scholes
model, particularly to account for the volatility smile observed in market option prices. The local volatility
function can be calibrated to match market prices using Dupire’s formula.

Our goal is to price a European call option with strike price K and maturity T . The option price at time t
when the asset price is x is defined as

c(t, x) = Ẽ[e−r(T−t)(ST −K)+ | S(t) = x]

To derive the pricing PDE, we apply our four-step procedure.

(Step 1) The discounted option price e−rtc(t, S(t)) is a martingale under the risk-neutral measure. This
follows from the risk-neutral pricing principle and the martingale property of discounted asset prices in a
complete market.

(Step 2) Using Itô’s formula and the product rule:

d(e−rtc(t, S(t))) = e−rtdc(t, S(t))− re−rtc(t, S(t))dt

Applying Itô’s formula to c(t, S(t)):

dc(t, S(t)) = ct(t, S(t))dt+ cx(t, S(t))dS(t) +
1

2
cxx(t, S(t))dS(t)dS(t)

= ct(t, S(t))dt+ cx(t, S(t))[rS(t)dt+ σ(t, S(t))S(t)dW̃ (t)]

+
1

2
cxx(t, S(t))σ(t, S(t))

2S(t)2dt

Substituting back:

d(e−rtc(t, S(t))) = e−rt

[
ct(t, S(t)) + rS(t)cx(t, S(t)) +

1

2
σ(t, S(t))2S(t)2cxx(t, S(t))− rc(t, S(t))

]
dt

+ e−rtcx(t, S(t))σ(t, S(t))S(t)dW̃ (t)

(Step 3) Since e−rtc(t, S(t)) is a martingale, the coefficient of dt must vanish:

ct(t, S(t)) + rS(t)cx(t, S(t)) +
1

2
σ(t, S(t))2S(t)2cxx(t, S(t))− rc(t, S(t)) = 0

(Step 4) The resulting PDE is:

ct(t, x) + rxcx(t, x) +
1

2
σ(t, x)2x2cxx(t, x)− rc(t, x) = 0

This PDE generalizes the Black-Scholes equation, reducing to it when σ(t, x) = σ (constant).

To obtain a unique solution, we need appropriate boundary conditions.

1. Terminal condition (at t = T ):
c(T, x) = (x−K)+

2. Lower boundary (at x = 0):
c(t, 0) = 0

When the asset price is zero, it remains at zero (an absorbing state), making the call option worthless.
3. Upper boundary (as x→ ∞): For very large asset prices significantly above the strike, the call option

is almost certainly going to expire in-the-money. The boundary condition is approximately:

c(t, x) = Ẽ
[
e−r(T−t)(ST −K)+ | S(t) = x

]
≈ Ẽ

[
e−r(T−t)(ST −K) | S(t) = x

]
= Ẽ

[
e−r(T−t)ST | S(t) = x

]
−Ke−r(T−t)

= S(t)−Ke−r(T−t) = x−Ke−r(T−t)
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t

x

K

T

c(t, x) ≈ x−Ke−r(T−t)

0
c(t, 0) = 0

c(T, x) = (x−K)+

Figure 1.2.2: Domain for the call option pricing PDE in the local volatility model

For numerical implementation, we truncate the domain at a sufficiently large value of x (typically 2-3
standard deviations above the strike) where this approximation is accurate.

The illustration is shown in Figure 1.2.2. The PDE is solved in the rectangular region [0, T ] × [0, xmax],
where xmax is chosen large enough for the upper boundary approximation to be valid. The terminal condition
specifies values at t = T , while the lower and upper boundaries provide conditions at x = 0 and x = xmax

respectively.

Unlike the Black-Scholes model, the local volatility model typically does not admit closed-form solutions and
must be solved numerically using finite difference or Monte Carlo methods.

Here is a little bit of background on Asian options before we delve into our next example: Asian options
differ from standard European options in that their payoff depends on the average price of the underlying
asset over a time period, rather than solely on the terminal price. This structure was originally developed
in Japan for commodity markets to prevent price manipulation at maturity. Since manipulating prices over
an extended period is significantly more difficult than at a single point in time, Asian options offer reduced
vulnerability to market distortions.

Example 1.2.2 (Asian options). We consider an Asian call option in the standard Black-Scholes framework
where the asset price follows:

dS(t) = rS(t)dt+ σS(t)dW (t)

where r > 0 is the constant risk-free rate, σ > 0 is the constant volatility, and W (t) is a standard Brownian
motion under the risk-neutral measure P̃.

The payoff of an Asian call option at maturity T is given by:(
1

T

∫ T

0

S(u)du−K

)+

where K is the strike price and the expression represents the difference between the arithmetic average of the
asset price over [0, T ] and the strike, if positive.

(State variables and pricing function) To determine the appropriate form of the pricing function, we need
to identify the state variables that fully characterize the future distribution of the payoff. Unlike European
options where the current price S(t) is sufficient, Asian options require tracking both the current price and
the running average.

Consider two scenarios at time t with the same current price S(t) but different price paths up to time t.
Despite having identical S(t) values, these scenarios would have different running averages and consequently
different option prices. Similarly, two scenarios with identical running averages but different current prices
would also have different option values, as the future evolution depends on the current price.



22 Ch.1. Lecture Notes

Therefore, we define the state variable Y (t) to represent the running sum:

Y (t) =

∫ t

0

S(u)du

The price of the Asian option at time t is then a function of three variables:

c(t, x, y) = Ẽ

e−r(T−t)

(
1

T

∫ T

0

S(u)du−K

)+
∣∣∣∣∣∣S(t) = x, Y (t) = y


where x represents the current asset price and y represents the accumulated integral.

(System of SDEs) The joint evolution of the state variables (S(t), Y (t)) forms a two-dimensional Markov
process governed by the system:

dS(t) = rS(t)dt+ σS(t)dW (t)

dY (t) = S(t)dt

Following our four-step procedure:

(Step 1) The discounted option price e−rtc(t, S(t), Y (t)) is a martingale under the risk-neutral measure.

(Step 2) Using the product rule for Itô’s formula:

d(e−rtc(t, S(t), Y (t))) = e−rtdc(t, S(t), Y (t))− re−rtc(t, S(t), Y (t))dt

Applying Itô’s formula to c(t, S(t), Y (t)):

dc(t, S(t), Y (t)) = ct(t, S(t), Y (t))dt+ cx(t, S(t), Y (t))dS(t) + cy(t, S(t), Y (t))dY (t)

+
1

2
cxx(t, S(t), Y (t))(dS(t))2

= ct(t, S(t), Y (t))dt+ cx(t, S(t), Y (t))[rS(t)dt+ σS(t)dW (t)]

+ cy(t, S(t), Y (t))S(t)dt+
1

2
cxx(t, S(t), Y (t))σ2S(t)2dt

Substituting back:

d(e−rtc(t, S(t), Y (t))) = e−rt
[
ct(t, S(t), Y (t)) + rS(t)cx(t, S(t), Y (t))

+ S(t)cy(t, S(t), Y (t)) +
1

2
σ2S(t)2cxx(t, S(t), Y (t))− rc(t, S(t), Y (t))

]
dt

+ e−rtcx(t, S(t), Y (t))σS(t)dW (t)

(Step 3) Since e−rtc(t, S(t), Y (t)) is a martingale, the coefficient of dt must vanish:

ct(t, St, Yt) + rS(t)cx(t, St, Yt) + S(t)cy(t, St, Yt) +
1

2
σ2S(t)2cxx(t, St, Yt)− rc(t, St, Yt) = 0

(Step 4) The resulting PDE is:

ct(t, x, y) + rxcx(t, x, y) + xcy(t, x, y) +
1

2
σ2x2cxx(t, x, y)− rc(t, x, y) = 0 (1.2.1)

Equation 1.2.1 is known as the Feynman-Kac equation for the Asian option. The term xcy(t, x, y) arises
from the evolution of the running sum Y (t) and distinguishes this PDE from the standard Black-Scholes
equation.

Again, to obtain a unique solution to the PDE, we need appropriate boundary conditions. Since we now
have three variables (t, x, y), the domain is a three-dimensional box, and we need to specify conditions on its
boundaries:
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1. Terminal condition (at t = T ):

c(T, x, y) =

(
y + 0

T
−K

)+

=
( y
T

−K
)+

This follows from the definition of the option payoff. At maturity, the running sum Y (T ) contains the
complete integral needed for the average calculation.

2. Boundary at x = 0: When the asset price reaches zero, it remains at zero (an absorbing state).
The future contribution to the average will be zero, and the option value depends only on whether the
current accumulated average exceeds the strike:

c(t, 0, y) = e−r(T−t)
( y
T

−K
)+

3. Boundary for large x (as x → ∞): For very large asset prices, the average is almost certain to
exceed the strike by a significant amount, and the option behaves asymptotically like the discounted
difference between the expected average and the strike:

c(t, x, y) ≈ Ẽ
[
e−r(T−t)

(
Y (T )

T
−K

) ∣∣∣∣S(t) = x, Y (t) = y

]
This can be computed explicitly using the martingale property of the discounted price.

4. Boundary for very negative y (mathematical extension): Although Y (t) represents a running sum
of non-negative values in the original problem, the PDE remains mathematically valid for negative y
values. For sufficiently negative y, such that the terminal average will almost certainly be below the
strike, the option is worthless:

c(t, x, y) ≈ 0 for y ≪ 0

This extension facilitates numerical solutions by providing a clear boundary condition.

t

x

y

T
0

c(t, 0, y) = e−r(T−t)
(
y
T −K

)+

c(t, x, y) ≈ 0 for y ≪ 0

c(t, x, y) for large x

c(T, x, y) =
(
y
T −K

)+

Figure 1.2.3: Three-dimensional domain for the Asian option pricing PDE

An illustration is shown in Figure 1.2.3. The PDE must be solved in the interior of the box with boundary
conditions specified on all sides. The terminal condition at t = T provides the option payoff, while additional
conditions are needed at extremes of x and y.

The complexity of this PDE generally precludes analytical solutions, necessitating numerical methods such
as finite differences or Monte Carlo simulation for practical implementation.

End of Lecture 4
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Exercise 1.2.3 (A four-step procedure example). Consider the stochastic differential equation

dX(u) = dW (u)

with the initial condition X(t) = x. Then X(T ) = x+W (T )−W (t). The transition density is given by

p(t, x;T, y) =
1√

2π(T − t)
exp

{
− (y − x)2

2(T − t)

}
Define the pricing function g(t, x) = Ẽ[h(X(T )) | X(t) = x], which implies g(T, x) = h(x). Also, g(t, x) can
be expressed as an integral:

g(t, x) =

∫ ∞

−∞
h(y)p(t, x;T, y)dy

1. Consider h(y) = y2. Compute g(t, x) using two methods:

(a) Direct computation using properties of conditional expectation:

g(t, x) = Ẽ[X2(T ) | X(t) = x] = Ẽ[(x+W (T )−W (t))2]

= x2 + 2xẼ[W (T )−W (t)] + Ẽ[(W (T )−W (t))2] = x2 + T − t

The result follows since Ẽ[W (T )−W (t)] = 0 and Ẽ[(W (T )−W (t))2] = T − t.

(b) Integration using the transition density:

g(t, x) =

∫ ∞

−∞
y2 p(t, x;T, y) dy =

1√
2π(T − t)

∫ ∞

−∞
y2 exp

{
− (y − x)2

2(T − t)

}
dy

Using the substitution z = y − x, we have:

g(t, x) =
1√

2π(T − t)

∫ ∞

−∞
(x+ z)2 exp

{
− z2

2(T − t)

}
dz = I1 + I2 + I3

where

I1 =
1√

2π(T − t)

∫ ∞

−∞
x2 exp

{
− z2

2(T − t)

}
dz = x2

I2 =
1√

2π(T − t)

∫ ∞

−∞
2xz exp

{
− z2

2(T − t)

}
dz =

2x√
2π(T − t)

∫ ∞

−∞
z exp

{
− z2

2(T − t)

}
dz = 0

The integral in I2 evaluates to zero because the integrand is an odd function.

For I3:

I3 =
1√

2π(T − t)

∫ ∞

−∞
z2 exp

{
− z2

2(T − t)

}
dz =

1√
2π(T − t)

∫ ∞

−∞
z · z exp

{
− z2

2(T − t)

}
dz

Using integration by parts with u = z and dv = z exp{− z2

2(T−t)} dz:

I3 =
1√

2π(T − t)

[
z · −(T − t) exp

{
− z2

2(T − t)

}]z=∞

z=−∞

− 1√
2π(T − t)

∫ ∞

−∞
−(T − t) exp

{
− z2

2(T − t)

}
dz

= 0 + (T − t) = T − t

Therefore, g(t, x) = I1 + I2 + I3 = x2 + 0 + (T − t) = x2 + T − t.
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2. Show that g(t, x) is a martingale and derive the corresponding PDE.

To show g(t,X(t)) is a martingale, we need to verify:

Ẽ[g(τ,X(τ)) | F(s)] = Ẽ[Ẽ[X2(T ) | F(τ)] | F(s)] = Ẽ[X2(T ) | F(s)] = g(s,X(s))

for s < τ , where we used the tower property of conditional expectations.

To derive the PDE, we apply Itô’s formula to g(t,X(t)):

dg(t,X(t)) = gt(t,X(t)) dt+ gx(t,X(t)) dX(t) +
1

2
gxx(t,X(t)) dt

= gt(t,X(t)) dt+ gx(t,X(t)) dW (t) +
1

2
gxx(t,X(t)) dt

Since g(t,X(t)) is a martingale, the dt terms must sum to zero:

gt(t,X(t)) +
1

2
gxx(t,X(t)) = 0

Replacing X(t) with x, we get the PDE:

gt(t, x) +
1

2
gxx(t, x) = 0, ∀ 0 ≤ t ≤ T, ∀x ∈ R

3. Verify that g(t, x) = x2 + T − t satisfies the PDE.

We compute the partial derivatives:

gt(t, x) = −1, gxx(t, x) = 2

Substituting into the PDE:

gt(t, x) +
1

2
gxx(t, x) = −1 +

1

2
· 2 = −1 + 1 = 0

Therefore, g(t, x) = x2 + T − t satisfies the PDE.

Sidenotes
There are a lot of processes that are not Markovian. Below is an example.

Example 1.2.4 (Non-Markovian process). Consider the process in Figure 1.2.4. Note that

E[S3 | F2](HT ) =
1

1
· 2 = 2, E[S3 | F2](TH) =

1

2
· 4 + 1

2
· 4 = 4

For the process to be Markov, only the value of S2 (namely 4) should matter for predicting S3. There should
exist a single function

g (2, S2) such that E[S3 | F2] = g (2, 4) ,

regardless of how S2 ended up being 4.

But here, depending on whether S2 = 4 came from HT or TH, we get different conditional expectations (2
vs. 4). That shows no single function g (2, 4) can represent both of those conditional expectations. The only
way you can correctly predict E[S3 | F2] is to look at more than just the current state S2; you need to know
the path taken. That violates the Markov property.

End of Recitation 2

A common misconception is that every stochastic integral with respect to Brownian motion is normally
distributed. This is not true in general, especially when the integrand is itself a random process. However, if
the integrand is a deterministic function, then the stochastic integral is indeed normally distributed. Below,
we illustrate both points.
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S2(HHH) = 32

S2(HH) = 16

S1(H) = 8 S3(HHT ) = S3(HTH) = 8

S2(HT ) = 4

S0 = 4 S3(HTT ) = 2

S2(TH) = 4 S3(THH) = S3(THT ) = 4

S1(T ) = 2 S3(TTH) = 2

S2(TT ) = 1

S3(TTT ) = 1/2

Figure 1.2.4: An example of a non-Markovian process

Example 1.2.5 (A stochastic integral that is not Gaussian). Consider the process∫ t

0

Wu dWu.

Applying Itô’s formula to W 2
t , we recall that

d(W 2
t ) = 2Wt dWt + 1 dt,

so rearranging and integrating from 0 to t gives∫ t

0

Wu dWu =
1

2
W 2

t − t

2
.

Since W 2
t ≥ 0, it follows that ∫ t

0

Wu dWu ≥ − t

2
.

A Gaussian random variable, in contrast, takes values in (−∞,∞) with nonzero probability everywhere.
Hence,

∫ t

0
Wu dWu cannot be normally distributed. Indeed, it is supported on

[
− t

2 ,∞
)

and thus fails to have
the full real line as its range of possible values.

While integrals of the form
∫ t

0
(random) dW can yield a wide variety of distributions, there is a crucial special

case in which the result is always Gaussian:

Proposition 1.2.6. Let α(·) be a deterministic function on [0, t]. Then∫ t

0

α(u) dW (u) ∼ N

(
0,

∫ t

0

α(u)2 du

)
.
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Proof outline. Define

Zt(θ) = exp

{
θ

∫ t

0

α(u) dW (u)

}
exp

{
−1

2
θ2
∫ t

0

α(u)2 du

}
, θ ∈ R.

Itô’s lemma and the properties of stochastic exponentials show that Zt(θ) is a martingale with E[Z0(θ)] = 1.
Hence

E[Zt(θ)] = 1.

Rewriting,

E
[
exp

{
θ

∫ t

0

α(u) dW (u)

}]
= exp

{
1

2
θ2
∫ t

0

α(u)2 du

}
.

The right-hand side is precisely the moment generating function of a normal random variable with mean 0
and variance

∫ t

0
α(u)2 du. Consequently,∫ t

0

α(u) dW (u) ∼ N

(
0,

∫ t

0

α(u)2 du

)
.

When α(u) is deterministic, the stochastic integral behaves like a linear combination of (infinitesimal) normal
increments with fixed coefficients, preserving normality. If α(u) is random (for instance, depends on Wu or
other random processes), then the distribution can deviate significantly from Gaussian.

In finance, one can exploit this fact in models where the volatility σ(t) is purely a deterministic function of
time. Then

∫ t

0
σ(u) dW (u) is normal, leading to closed-form solutions (e.g. a version of the Black-Scholes

formula for time-dependent volatility).

1.2.4 Kolmogorov’s equations and Dupire’s formula
We now turn to a central topic in local volatility modeling : how to ensure that a chosen volatility function
σ(t, x) can match all observed market prices of European options. This line of reasoning leads us toward
Dupire’s formula, but first we need to establish the relevant Kolmogorov equations for transition densities.

Consider the local volatility model:

dS(t) = r S(t) dt+ σ (t, S(t)) S(t) dW̃ (t),

where

• S(t) is the underlying asset price at time t,
• r is a (constant) risk-free rate,
• σ(t, S(t)) is a local volatility function depending on both time t and the current price S(t),
• W̃ (t) is a Brownian motion under the risk-neutral measure.

Our goal is to see how one might choose σ(t, x) so that this model reproduces the full market surface of
European option prices (i.e. perfect calibration). Before deriving Dupire’s formula, we recall how transition
densities evolve in Markov diffusion models.

Kolmogorov’s forward and backward equations

A process X(t) governed by the SDE

dX(t) = β (t,X(t)) dt+ γ (t,X(t)) dW̃ (t)

is Markovian, and hence for any times t < T , the distribution of X(T ) given X(t) = x can be described via
a transition probability density function (PDF),

p(t, x;T, y) =
d

dy
P̃ (X(T ) ≤ y | X(t) = x) .
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In the local volatility setting for S(t), we similarly define

p (t, x;T, y) =
d

dy
P (S(T ) ≤ y | S(t) = x) .

These transition densities satisfy two important PDEs known as the Kolmogorov equations:

• Backward Kolmogorov equation (BKE):
For (t, x) in the “backward” variables and fixed (T, y),

pt(t, x;T, y) + β(t, x) px(t, x;T, y) +
1

2
γ (t, x)

2
pxx(t, x;T, y) = 0. (1.2.2)

Note that the Black-Scholes PDE emerges as a special case of this backward equation when β(t, x) = rx
and γ(t, x) = σx are constants in x (up to a factor x).

• Forward Kolmogorov equation (FKE):
For (T, y) in the “forward” variables and fixed (t, x),

pT (t, x;T, y) +
∂

∂y
[β (T, y) p(t, x;T, y)]− 1

2

∂2

∂y2

[
γ (T, y)

2
p(t, x;T, y)

]
= 0. (1.2.3)

In essence, the backward PDE treats (t, x) as the evolving variables (with (T, y) fixed), while the forward
PDE treats (T, y) as the evolving variables (with (t, x) fixed).

Proof outline of the FKE. We prove by contradiction. Define

q(t, x;T, y) = pT (t, x;T, y) + [β (T, y) p(t, x;T, y)]y −
1

2

[
γ (T, y)

2
p(t, x;T, y)

]
yy
.

Suppose that at some point (t0, x0, T0, y0), this quantity is not zero. By continuity, q will be strictly positive
(or negative) on a small interval (a, b) around y0.

Choose a smooth bump function h(y) with support in [a, b] such that

h(a) = h(b) = h′(a) = h′(b) = 0, h(y) > 0 for y ∈ (a, b).

The idea is to multiply q by this positive function h and integrate, then show that the integral must be both
zero and strictly positive, a contradiction.

Applying Itô’s formula to h (X(t)), one has

h (X(T )) = h (X(t)) +

∫ T

t

h′(X(u))β (u,X(u)) du

+

∫ T

t

h′(X(u)) γ (u,X(u)) dW̃ (u)

+
1

2

∫ T

t

h′′(X(u)) γ (u,X(u))
2
du,

then taking conditional expectations Ẽ[ · | X(t0) = x] yields an integral representation involving the transi-
tion density p(t0, x;T, y).

By carefully rearranging terms (integration by parts in y), one arrives at∫ b

a

h(y) p(t0, x;T0, y) dy = h(x)−
∫ T0

t0

∫ b

a

(β p)y h(y) dy dt+

∫ T0

t0

∫ b

a

1

2

[
γ2 p

]
yy
h(y) dy dt.

Now, by the Leibniz rule for parameter differentiation under the integral sign,

∂

∂T
LHS =

∫ b

a

h(y)
∂

∂T
p (t0, x;T, y) dy =

∫ b

a

h(y) pT (t0, x;T, y) dy,
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where pT denotes the partial derivative of p with respect to the second time argument T . For RHS on
the other hand, the derivative of the constant term h(x) with respect to T is 0. For the double integrals
(from t0 to T ), differentiation with respect to the upper limit T picks out the integrand evaluated at t = T .
Concretely,

d

dT

[
−
∫ T

t0

∫ b

a

h(y) [β(t, y) p(·)]y dy dt

]
= −

∫ b

a

h(y) [β(T, y) p (t0, x;T, y)]y dy.

d

dT

[∫ T

t0

∫ b

a

1

2
h(y)

[
γ2(t, y) p(·)

]
yy
dy dt

]
=

∫ b

a

1

2
h(y)

[
γ2(T, y) p (t0, x;T, y)

]
yy
dy.

Putting these pieces together, we obtain:

∂

∂T
(RHS) = −

∫ b

a

h(y) [β(T, y) p (t0, x;T, y)]y dy +

∫ b

a

1

2
h(y)

[
γ2(T, y) p (t0, x;T, y)

]
yy
dy.

Equating the derivatives of LHS and RHS gives:∫ b

a

h(y) pT (t0, x;T, y) dy = −
∫ b

a

h(y) [β(T, y) p(·)]y dy +
∫ b

a

1

2
h(y)

[
γ2(T, y) p(·)

]
yy
dy.

Rearrange terms:∫ b

a

h(y)

{
pT (t0, x;T, y) + [β(T, y) p (t0, x;T, y)]y −

1

2

[
γ2(T, y) p (t0, x;T, y)

]
yy

}
dy = 0.

That is, by our initial definition, ∫ b

a

h(y) q (t0, x;T, y) dy = 0.

By assumption, if q is strictly positive (or strictly negative) on (a, b), and h is chosen to be strictly positive
on (a, b), then

∫ b

a
h(y) q(·) dy ̸= 0. However, the above integral identity says it must be 0. Contradiction!

End of the second half of Lecture 5

Dupire’s formula

In the local volatility framework the asset dynamics are described by

dS(t) = r S(t) dt+ σ(t, S(t))S(t) dW̃ (t),

where r is the constant risk-free rate and σ(t, S(t)) is the local volatility function. The key calibration
question is: given the observed market prices of European call options,

c(0, S(0);T,K) = Ẽ
[
e−rT (S(T )−K)+

]
,

how can we choose σ so that the model reproduces these prices across all strikes K and maturities T?

Dupire’s formula provides an explicit relationship between the call price surface and the local volatility
function. In particular, it states that

Theorem 1.2.7 (Dupire).

σ(T,K)2 =
2 (cT (0, S(0);T,K) + rK cK(0, S(0);T,K))

K2 cKK(0, S(0);T,K)
, (1.2.4)

where cT , cK , and cKK denote the partial derivatives of the call price with respect to the maturity T , strike
K, and the second derivative with respect to K, respectively.
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Before delving into the full derivation of this result, we illustrate its consistency with the classical Black-
Scholes model.

Example 1.2.8 (Consistency with the Black-Scholes model). Assume that the call price is given by the
Black-Scholes formula:

c(0, S(0);T,K) = S(0)N(d+)− e−rTKN(d−),

with

d± =
log(S(0)/K) +

(
r ± 1

2σ
2
)
T

σ
√
T

,

where σ is the constant volatility and N(·) is the standard normal cumulative distribution function.

When this call price is substituted into Dupire’s formula, one should recover the constant volatility, i.e.,
σ(T,K) = σ. We verify as follows. A crucial relation in the Black-Scholes model is

S(0)N ′(d+) = e−rTKN ′(d−), (1.2.5)

where N ′(·) is the standard normal PDF. It can be derived by

N ′(d+)

N ′(d−)
=
e−d2

+/2

e−d2
−/2

= e−(log(S(0)/K)+rT ) =
K

S(0)
e−rT .

The partial derivatives of the call price are computed as:

cT =
1

2
S(0)N ′(d+)

σ√
T

+ re−rTKN ′(d−), cK = −e−rTN(d−), cKK =
1

K2σ
√
T
S(0)N ′(d+).

Substituting these expressions into Dupire’s formula

σ(T,K)2 =
2 (cT + rK cK)

K2 cKK
,

straightforward algebra shows that the resulting local volatility equals the constant σ.

This confirms that Dupire’s formula is consistent with the Black-Scholes model when the market call prices
are generated by Black-Scholes.

In practical applications, the partial derivatives cT , cK , and cKK are estimated from a continuum of observed
call option prices across strikes and maturities. The formula thus enables one to determine the local volatility
surface that exactly matches the market prices, making it a powerful tool for calibration in equity markets.

Derivation of Dupire’s formula. We begin with the risk-neutral pricing formula for a European call option:

c(0, S(0);T,K) = c(T,K) = Ẽ
[
e−rT (S(T )−K)+

]
= e−rT

∫ ∞

K

(y −K) p(0, S(0);T, y) dy,

where p(0, S(0);T, y) denotes the transition density of S(T ) given S(0). For notational simplicity, we drop
the explicit dependence on the initial time and spot, writing c(T,K) and p(T, y).

Differentiating the call price with respect to T and K yields:

cT (T,K) = −r c(T,K) + e−rT

∫ ∞

K

(y −K) pT (T, y) dy,

cK(T,K) = e−rT

∫ ∞

K

(−p(T, y)) dy = −e−rT P̃[S(T ) ≥ K],

cKK(T,K) = e−rT p(T,K).

Next, we recall the FKE (Equation 1.2.3) for a Markov process governed by

dX(u) = β(u,X(u)) du+ γ(u,X(u)) dW̃ (u).
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Its transition density p(t, x;T, y) satisfies

q(T, y) := pT (T, y) +
∂

∂y
[β(T, y) p(T, y)]− 1

2

∂2

∂y2
[
γ(T, y)2 p(T, y)

]
= 0.

In the local volatility model we have

β(T, y) = ry and γ(T, y) = σ(T, y)y,

so that the FKE becomes

q(T, y) = pT (T, y) +
∂

∂y
[ry p(T, y)]− 1

2

∂2

∂y2
[
σ(T, y)2 y2 p(T, y)

]
= 0.

The key insight is to multiply q(T, y) by the call payoff (y −K) and integrate over y from K to ∞:

0 =

∫ ∞

K

(y −K) q(T, y) dy = A1 +A2 −
1

2
A3,

with
A1 :=

∫ ∞

K

(y −K) pT (T, y) dy, A2 :=

∫ ∞

K

(y −K)
∂

∂y
[ry p(T, y)] dy,

A3 :=

∫ ∞

K

(y −K)
∂2

∂y2
[
σ(T, y)2 y2 p(T, y)

]
dy.

By the definition of cT we have cT (T,K) = −r c(T,K) + e−rT A1, or equivalently,

A1 = erT [cT (T,K) + r c(T,K)] .

Integrate by parts with

u(y) = y −K and dv =
∂

∂y
[ry p(T, y)] dy.

Then,

A2 = [(y −K) ry p(T, y)]
y=∞
y=K −

∫ ∞

K

1 · [ry p(T, y)] dy.

Assuming that the boundary term vanishes as y → ∞ and noting that at y = K the factor (y −K) = 0, it
follows that

A2 = −r
∫ ∞

K

(y −K) p(T, y) dy + rK

∫ ∞

K

p(T, y) dy.

Recognizing that

e−rT

∫ ∞

K

(y −K) p(T, y) dy = c(T,K)

and
e−rT

∫ ∞

K

p(T, y) dy = − cK(T,K),

we can rewrite A2 as
A2 = −re−rT c(T,K) + rK erT cK(T,K).

A similar (double) integration by parts yields

A3 = σ(T,K)2K2 p(T,K).

Since cKK(T,K) = e−rT p(T,K), it follows that

A3 = σ(T,K)2K2 erT cKK(T,K).
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(Combining the results) Substitute A1, A2, and A3 back into the integrated FKE:

0 = erT [cT (T,K) + r c(T,K)] +
[
−re−rT c(T,K) + rK erT cK(T,K)

]
− 1

2
σ(T,K)2K2 erT cKK(T,K).

Dividing both sides by erT yields

0 = cT (T,K) + r c(T,K)− r e−2rT c(T,K) + rK cK(T,K)− 1

2
σ(T,K)2K2 cKK(T,K).

Noting that the discount factors cancel appropriately in the derivation, we obtain the final relation

cT (T,K) + rK cK(T,K)− 1

2
σ(T,K)2K2 cKK(T,K) = 0.

Solving for σ(T,K)2 gives Dupire’s formula

σ(T,K)2 =
2 (cT (T,K) + rK cK(T,K))

K2 cKK(T,K)

as desired.

Conclusion of materials for the midterm

1.3 Fixed income models
Reference: [Shr].

Thus far, our focus has been on equity pricing using a Markovian framework and the tools of stochastic
calculus. Now we shift our attention to fixed income, where our aim is to explore continuous-time models that
capture the dynamics of interest rates. In this chapter, we introduce the fundamental concepts underlying
fixed income modeling—from the construction of yield curves and the definition of forward rates to the
formulation of short rate models and their applications in pricing bonds and related interest rate derivatives.

Our approach will demonstrate how the techniques of stochastic calculus can be applied to analyze and
calibrate models in the fixed income arena, ultimately providing a unified framework for understanding the
behavior of interest rate instruments in continuous time.

1.3.1 Yield curve and forward interest rates
Reference: [Shr, §1.1–1.3].

The term structure of interest rates is a central concept in fixed income markets. It is graphically represented
by the yield curve—a function that maps maturities T to their corresponding continuously compounded
yields. At the initial time (commonly taken as t = 0), the yield curve is observable and fixed. For example,
the yields for bonds expiring one month, six months, one year, and so forth, are known. Importantly, the yield
curve at time zero also satisfies Y (0, 0) = R(0), indicating that the yield for an infinitely short investment is
the short rate.

Figure 1.3.1 portrays two configurations of the yield curve. In the left panel, the curve Y (0, T ) represents
the known yields at time zero for various maturities T . In contrast, the right panel shows the yield curve
Y (t, T ) observed at a later time t > 0; here, while the yield corresponding to the instantaneous maturity
T = t (which equals the short rate R(t)) is still defined, the yields for T > t are not predetermined but are
random, reflecting future market uncertainty. This dynamic perspective is essential, as a primary objective
in fixed income modeling is to describe how the entire curve Y (t, ·) evolves over time.

Now, our goal is to develop a model for the evolution in time of the yield curve, i.e., to characterize how the
function

Y (t, ·) : T 7→ Y (t, T )
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yield

T T

R(0)

Y (0, T )

known at time zero

maturity

yield

t T

Y (t, T )

unknown; random

Figure 1.3.1: Illustration of the term structure at time 0 (left) and at a later time t (right).

changes with the time parameter t.

Observation 1: correspondence between yields and bond prices.

Let B(t, T ) denote the price, at time t, of a non-defaultable zero-coupon bond that pays $1 at maturity T .
The yield Y (t, T ) is defined through the relation

B(t, T ) = e−Y (t,T )(T−t) =⇒ Y (t, T ) =
− logB(t, T )

T − t
.

Thus, bond prices and yields are in one-to-one correspondence and knowledge of one determines the other.

Observation 2: (instantaneous) forward interest rate.

Another quantity of central importance is the (instantaneous) forward interest rate, f(t, T ). This rate is
defined as the rate agreed upon at time t for a loan that starts at time T and spans a very short interval.

(Derivation via a replicating portfolio) Consider constructing the following portfolio at time t:

1. Long: One unit of the bond maturing at T , with price B(t, T ).

2. Short:
B(t, T )

B(t, T + τ)
units of the bond maturing at T + τ , with price B(t, T + τ).

The initial net cost of the portfolio is zero. At time T , the long bond pays $1. At time T + τ the short
position must be covered by paying

B(t, T )

B(t, T + τ)
.

Interpreting this as a borrowing with an effective interest rate f(t, T, T + τ) for the period of length τ , we
equate

1 + τ f(t, T, T + τ) =
B(t, T )

B(t, T + τ)

=⇒ f(t, T, T + τ) =

B(t,T )
B(t,T+τ) − 1

τ
= −B(t, T + τ)−B(t, T )

τ
· 1

B(t, T + τ)
.

Definition 1.3.1. Taking the limit as τ → 0 defines the instantaneous forward rate:

f(t, T ) = lim
τ↓0

f(t, T, T + τ) = − ∂

∂T
B(t, T ) · 1

B(t, T )
= − ∂

∂T
logB(t, T ). (1.3.1)

In particular, setting T = t recovers the short rate:

f(t, t) = R(t).

Furthermore, integrating the forward rate yields∫ T

t

f(t, u) du = − logB(t, T ), =⇒ B(t, T ) = e−
∫ T
t

f(t,u) du, 0 ≤ t ≤ T ≤ T̄ . (1.3.2)
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This demonstrates the one-to-one correspondence between bond prices, yields, and forward rates. Conse-
quently, a model for any one of these quantities inherently provides models for the others.

1.3.2 The Ho-Lee short rate model
Reference: [Shr, §1.5, 1.6].

The Ho-Lee model is one of the simplest short-rate models, and it offers a framework for pricing fixed income
securities by modeling the dynamics of the instantaneous short rate. Recall that the short rate is given by

R(t) = f(t, t).

In the Ho-Lee model the short rate evolves according to

dR(t) = α(t) dt+ σ dW̃ (t),

where:

• α(t) is a deterministic function (often chosen to fit the initial term structure),
• σ is a constant, representing the absolute volatility of the short rate,
• W̃ (t) is a Brownian motion under the risk-neutral measure.

The risk-neutral pricing formula for a zero-coupon bond remains:

B(t, T ) = Ẽ
[
e−

∫ T
t

R(u) du
∣∣∣F(t)

]
=

1

D(t)
Ẽ
[
D(T )

∣∣∣F(t)
]
,

whereD(t) is the discount factor. This implies that the discounted bond price, D(t)B(t, T ), is a P̃-martingale.

Due to the Markov property of the short rate process, the bond price can be expressed as a function of time
and the current short rate:

B(t, T ) = g(t, T,R(t)).

A standard four-step procedure yields a partial differential equation (PDE) for the function g(t, T, r). Solving
this PDE provides explicit bond pricing formulas within the Ho-Lee framework.

End of Lecture 6

We continue the analysis of the Ho-Lee model, where the short rate R(t) follows the dynamics under the
risk-neutral measure P̃:

dR(t) = α(t)dt+ σdW̃ (t), (1.3.3)

with α(t) being a deterministic function of time and σ > 0 a constant volatility. W̃ (t) is a standard Brownian
motion under P̃.

Our primary goal is to determine the price B(t, T ) of a zero-coupon bond maturing at time T with face value
1. The risk-neutral pricing formula gives:

B(t, T ) = Ẽ
[
e−

∫ T
t

R(u)du
∣∣∣F(t)

]
.

Since the process R(t) is Markovian, the bond price B(t, T ) depends only on the current time t and the current
short rate R(t), along with the maturity T . We denote this functional dependence as B(t, T ) = g(t, R(t);T ).
We aim to find the pricing function g(t, r;T ).

We employ the standard four-step procedure for finding the pricing function associated with a Markovian
short-rate model.

Step 1: Identify a martingale. The discounted bond price, D(t)B(t, T ), where D(t) = e−
∫ t
0
R(u)du is the

discount factor, is a martingale under P̃. This follows directly from the tower property of conditional
expectation applied to the pricing formula:

D(t)B(t, T ) = D(t)Ẽ
[
D(T )

D(t)

∣∣∣F(t)

]
= Ẽ[D(T ) | F(t)].
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Since D(T ) is an F(T )-measurable random variable, its conditional expectation process is a martingale.

Step 2: Compute the martingale differential. We apply Itô’s formula to D(t)B(t, T ) = D(t)g(t, R(t);T ). Let
g = g(t, R(t);T ). First, dD(t) = −R(t)D(t)dt. Second, applying Itô’s lemma to g(t, R(t);T ) considering
R(t) as the stochastic variable and t as the time variable:

dg = gtdt+ grdR(t) +
1

2
grr(dR(t))

2

=

(
gt + grα(t) +

1

2
grrσ

2

)
dt+ grσdW̃ (t).

Using the product rule d(XY ) = XdY + Y dX + dXdY :

d(D(t)g) = D(t)dg + gdD(t) + (dD(t))(dg)

= D(t)

[(
gt + grα(t) +

1

2
grrσ

2

)
dt+ grσdW̃ (t)

]
+ g(−R(t)D(t)dt) + 0

= D(t)

[(
gt + grα(t) +

1

2
grrσ

2 −R(t)g

)
dt+ grσdW̃ (t)

]
.

Step 3: Set the drift term to zero. Since D(t)B(t, T ) is a P̃-martingale, the dt term in its differential must
be zero. Dividing by the non-zero factor D(t):

gt + grα(t) +
1

2
grrσ

2 −R(t)g = 0.

Step 4: Formulate the PDE. Replacing the stochastic process R(t) with the state variable r, we obtain the
partial differential equation (PDE) for the bond pricing function g(t, r;T ):

gt(t, r) + α(t)gr(t, r) +
1

2
σ2grr(t, r)− rg(t, r) = 0. (1.3.4)

The terminal condition comes from the definition B(T, T ) = 1 (bond price at maturity equals face value),
so g(T, r;T ) = 1 for all r.

Solving the PDE using the affine ansatz. The Ho-Lee model belongs to the class of affine term structure
models. For such models, the bond pricing function typically takes an exponential-affine form. We make the
ansatz:

g(t, r;T ) = exp[−C(t, T )r −A(t, T )], (1.3.5)

where A(t, T ) and C(t, T ) are deterministic functions of time t and maturity T . We compute the necessary
partial derivatives:

gt = (−Ctr −At)g, gr = −Cg, grr = (−C)2g = C2g.

Substituting these into the PDE (1.3.4):

(−Ctr −At)�g + α(t)(−C�g) +
1

2
σ2(C2

�g)− r�g = 0.

Rearranging and grouping terms by powers of r:

r(−Ct − 1) +

(
−At − α(t)C +

1

2
σ2C2

)
= 0.

Since this equation must hold for all values of r, the coefficients of r and the constant term must both
independently be zero:

−Ct(t, T )− 1 = 0 (1.3.6)

−At(t, T )− α(t)C(t, T ) +
1

2
σ2C(t, T )2 = 0 (1.3.7)
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The terminal condition g(T, r;T ) = 1 implies exp[−C(T, T )r −A(T, T )] = 1 for all r. This requires the
exponent to be zero, leading to the terminal conditions for the ODEs:

C(T, T ) = 0, A(T, T ) = 0.

Solving the ODE for C(t, T ) (1.3.6) with C(T, T ) = 0: Ct = −1 =⇒ C(t, T ) = −t + K(T ). Using
C(T, T ) = 0, we get −T +K(T ) = 0 =⇒ K(T ) = T . Thus, C(t, T ) = T − t.

Substitute C(t, T ) = T − t into the ODE for A(t, T ) (1.3.7):

−At(t, T )− α(t)(T − t) +
1

2
σ2(T − t)2 = 0 =⇒ At(t, T ) = −α(t)(T − t) +

1

2
σ2(T − t)2.

Integrating from t to T using A(T, T ) = 0:

A(t, T ) = −
∫ T

t

(
−α(u)(T − u) +

1

2
σ2(T − u)2

)
du =

∫ T

t

α(u)(T − u)du−
∫ T

t

1

2
σ2(T − u)2du.

The second integral can be computed explicitly:∫ T

t

1

2
σ2(T − u)2du =

1

2
σ2

[
− (T − u)3

3

]T
t

=
1

2
σ2

(
0− (− (T − t)3

3
)

)
=

1

6
σ2(T − t)3.

So,

A(t, T ) =

∫ T

t

α(u)(T − u)du− 1

6
σ2(T − t)3.

Plugging A(t, T ) and C(t, T ) back into the ansatz (1.3.5), the bond price is:

B(t, T ) = g(t, R(t);T ) = exp

[
−(T − t)R(t)−

∫ T

t

α(u)(T − u)du+
1

6
σ2(T − t)3

]
. (1.3.8)

(Yield calculation) The continuously compounded yield Y (t, T ) is defined by B(t, T ) = e−(T−t)Y (t,T ). Com-
paring with (1.3.8):

−(T − t)Y (t, T ) = −(T − t)R(t)−
∫ T

t

α(u)(T − u)du+
1

6
σ2(T − t)3.

Dividing by −(T − t):

Y (t, T ) = R(t) +
1

T − t

∫ T

t

α(u)(T − u)du− 1

6
σ2(T − t)2. (1.3.9)

(Bond price dynamics) To find dB(t, T ), we first find the dynamics of the exponent in (1.3.8). Let

Yexp(t) = −(T − t)R(t)−
∫ T

t

α(u)(T − u)du+
1

6
σ2(T − t)3.

Applying Itô’s lemma and Leibniz rule:

dYexp(t) = d(−(T − t)R(t))− d

(∫ T

t

α(u)(T − u)du

)
+ d

(
1

6
σ2(T − t)3

)
= −[(T − t)dR(t) +R(t)d(T − t) + d(T − t)dR(t)]− [−α(t)(T − t)dt] +

1

6
σ2 · 3(T − t)2(−1)dt

= −[(T − t)(α(t)dt+ σdW̃ (t)) +R(t)(−dt) + 0] + α(t)(T − t)dt− 1

2
σ2(T − t)2dt

= −(T − t)α(t)dt− (T − t)σdW̃ (t) +R(t)dt+ α(t)(T − t)dt− 1

2
σ2(T − t)2dt

=

(
R(t)− 1

2
σ2(T − t)2

)
dt− (T − t)σdW̃ (t).
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Now, applying Itô’s lemma to B(t, T ) = eYexp(t):

dB(t, T ) = B(t, T )dYexp(t) +
1

2
B(t, T )(dYexp(t))

2

= B(t, T )

[(
R(t)− 1

2
σ2(T − t)2

)
dt− (T − t)σdW̃ (t)

]
+

1

2
B(t, T )(−(T − t)σdW̃ (t))2

= B(t, T )

[(
R(t)− 1

2
σ2(T − t)2

)
dt− (T − t)σdW̃ (t)

]
+

1

2
B(t, T )(T − t)2σ2dt.

The σ2 terms cancel, yielding the bond price dynamics under P̃:

dB(t, T ) = R(t)B(t, T )dt− (T − t)σB(t, T )dW̃ (t). (1.3.10)

This confirms that the expected instantaneous return under P̃ is R(t). The term −(T − t)σ represents the
bond price volatility.

(Discounted bond price dynamics) Using d(D(t)B(t, T )) = D(t)dB(t, T ) + B(t, T )dD(t), we substitute
(1.3.10) and dD(t) = −R(t)D(t)dt:

d(D(t)B(t, T )) = D(t)[R(t)B(t, T )dt− (T − t)σB(t, T )dW̃ (t)] +B(t, T )[−R(t)D(t)dt]

= D(t)B(t, T )R(t)dt−D(t)B(t, T )(T − t)σdW̃ (t)−D(t)B(t, T )R(t)dt

= −D(t)B(t, T )(T − t)σdW̃ (t).

This is an SDE of the form dXt = XtΘ(t)dW̃ (t) with Θ(t) = −(T − t)σ. The solution is given by the
stochastic exponential:

D(t)B(t, T ) = B(0, T ) exp

(∫ t

0

−(T − u)σdW̃ (u)− 1

2

∫ t

0

(−(T − u)σ)2du

)
. (1.3.11)

(Forward rate calculation) The instantaneous forward rate f(t, T ) is related to the bond price by f(t, T ) =
− ∂

∂T logB(t, T ). Using the formula (1.3.8):

logB(t, T ) = −(T − t)R(t)−
∫ T

t

α(u)(T − u)du+
1

6
σ2(T − t)3

∂

∂T
logB(t, T ) = −R(t)− ∂

∂T

(∫ T

t

α(u)(T − u)du

)
+

1

6
σ2 · 3(T − t)2

= −R(t)−

[
α(T )(T − T ) +

∫ T

t

α(u)
∂

∂T
(T − u)du

]
+

1

2
σ2(T − t)2

= −R(t)−

[
0 +

∫ T

t

α(u)du

]
+

1

2
σ2(T − t)2 = −R(t)−

∫ T

t

α(u)du+
1

2
σ2(T − t)2.

Therefore, the forward rate is:

f(t, T ) = R(t) +

∫ T

t

α(u)du− 1

2
σ2(T − t)2. (1.3.12)

(Forward rate dynamics) We compute the differential df(t, T ) using (1.3.12) and Itô’s lemma / Leibniz rule:

df(t, T ) = dR(t) + d

(∫ T

t

α(u)du

)
− d

(
1

2
σ2(T − t)2

)
= (α(t)dt+ σdW̃ (t)) + (−α(t)dt)− (

1

2
σ2 · 2(T − t)(−1)dt)

= α(t)dt+ σdW̃ (t)− α(t)dt+ σ2(T − t)dt = σ2(T − t)dt+ σdW̃ (t).
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Note that the forward rate f(t, T ) is not a traded asset price, and its drift under P̃ is not R(t)f(t, T ), nor is it
zero in general. Thus, f(t, T ) is not a martingale under P̃. (The T -forward measure) We can define a change
of measure from P̃ to the T -forward measure PT such that f(t, T ) becomes a martingale. Rearranging the
dynamics:

df(t, T ) = σ
(
σ(T − t)dt+ dW̃ (t)

)
.

Define a new process WT (t) such that dWT (t) = σ(T − t)dt + dW̃ (t). By Girsanov’s theorem, WT (t) is a
Brownian motion under the measure PT defined by the Radon-Nikodym derivative process Z(t) = dPT

dP̃
|Ft

.
This process is given by the stochastic exponential:

Z(t) = E
(∫ t

0

−σ(T − u)dW̃ (u)

)
= exp

(
−σ
∫ t

0

(T − u)dW̃ (u)− 1

2
σ2

∫ t

0

(T − u)2du

)
.

Comparing this with the expression for the discounted bond price (1.3.11), we see a fundamental relationship:

Z(t) =
D(t)B(t, T )

B(0, T )
. (1.3.13)

This identity holds generally for arbitrage-free short-rate models: the Radon-Nikodym process relating the
risk-neutral measure P̃ to the T -forward measure PT is the discounted bond price D(t)B(t, T ), normalized
by its initial value B(0, T ).

Under the T -forward measure PT , the forward rate dynamics become:

df(t, T ) = σdWT (t). (1.3.14)

This confirms that f(t, T ) is a martingale under its corresponding forward measure PT .

End of the first half of Lecture 7

We present another interest rate model as an exercise.

Exercise 1.3.2 (The Cox-Ingersoll-Ross (CIR) model). We consider the Cox-Ingersoll-Ross (CIR) model
for the short-term interest rate R(u). Assume that R(u) ≥ 0 for all u ≥ 0. The dynamics are specified under
a risk-neutral measure P̃ .

1. (Analysis of the CIR model SDE) The CIR process R(u) is defined by the following stochastic differential
equation (SDE) under the risk-neutral measure P̃ :

dR(u) = k(θ −R(u))du+ σ
√
R(u)dW̃ (u), u ≥ 0 (1.3.15)

where k, θ, σ are positive constants, R(0) is the initial rate, and W̃ (u) is a standard Brownian motion
under P̃ . The condition 2kθ ≥ σ2 is typically required to ensure R(u) > 0 for u > 0 if R(0) > 0.
We investigate the process Y (u) = ekuR(u). Applying Itô’s lemma to f(u,R) = ekuR, we have ∂f

∂u =

kekuR, ∂f
∂R = eku, and ∂2f

∂R2 = 0. Therefore,

d(ekuR(u)) =

(
∂f

∂u
+
∂f

∂R
k(θ −R(u)) +

1

2

∂2f

∂R2
(σ
√
R(u))2

)
du+

∂f

∂R
σ
√
R(u)dW̃ (u)

=

(
kekuR(u) + ekuk(θ −R(u)) +

1

2
(0)σ2R(u)

)
du+ ekuσ

√
R(u)dW̃ (u)

=
(
kekuR(u) + kθeku − kekuR(u)

)
du+ σeku

√
R(u)dW̃ (u)

= kθekudu+ σeku
√
R(u)dW̃ (u).

Alternatively, as noted, using the informal product rule notation (justified by the Itô calculation above):

d(ekuR(u)) = ekudR(u) +R(u)d(eku)

= eku(k(θ −R(u))du+ σ
√
R(u)dW̃ (u)) +R(u)(kekudu)

= (kθeku − kR(u)eku + kR(u)eku)du+ σeku
√
R(u)dW̃ (u)

= kθekudu+ σeku
√
R(u)dW̃ (u).
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Integrating both sides from 0 to t:

ektR(t)− ek·0R(0) =

∫ t

0

kθekudu+

∫ t

0

σeku
√
R(u)dW̃ (u)

ektR(t) = R(0) + kθ

[
eku

k

]t
0

+ σ

∫ t

0

eku
√
R(u)dW̃ (u)

= R(0) + θ(ekt − 1) + σ

∫ t

0

eku
√
R(u)dW̃ (u).

This gives an expression for R(t):

R(t) = e−ktR(0) + θ(1− e−kt) + σe−kt

∫ t

0

eku
√
R(u)dW̃ (u). (1.3.16)

We cannot obtain a simple closed-form solution for R(t) itself because the Itô integral term depends on
R(u). However, we can compute the expected value under P̃ . Since

∫ t

0
eku
√
R(u)dW̃ (u) is an Itô integral

(assuming the integrand satisfies the necessary conditions, which it does for CIR), its expectation is zero:

Ẽ
∫ t

0

eku
√
R(u)dW̃ (u) = 0.

Therefore, the expected value of the short rate is:

ẼR(t) = e−ktR(0) + θ(1− e−kt), t ≥ 0. (1.3.17)

Note that the long-term mean of the expected rate is:

lim
t→∞

ẼR(t) = lim
t→∞

(e−ktR(0) + θ(1− e−kt)) = θ.

The Itô integral term I(t) =
∫ t

0
σeku

√
R(u)dW̃ (u) determines the stochastic nature of R(t) around its

mean. This integral has expected value ẼI(t) = 0. Its variance is given by the Itô isometry:

Var(I(t)) = ẼI(t)2 − (ẼI(t))2

= Ẽ
(
σ

∫ t

0

eku
√
R(u)dW̃ (u)

)2

= σ2Ẽ
∫ t

0

(
eku
√
R(u)

)2
du

= σ2

∫ t

0

e2kuẼR(u)du.

The random variable I(t) is generally not normally distributed. This is because the integrand H(u) =
σeku

√
R(u) is itself stochastic and depends on the path of W̃ (u) through R(u). An Itô integral∫ t

0
H(u)dW̃ (u) is normally distributed if and only if the integrand H(u) is deterministic. The fact that

R(u) ≥ 0 also implies the distribution of R(t) is skewed (specifically, related to a non-central chi-squared
distribution).

2. (Bond pricing under the CIR model) The CIR model (1.3.15) describes a Markov process for the short
rate R(t). We want to find the price at time t of a zero-coupon bond maturing at time T > t. Let Ft

be the filtration generated by the Brownian motion W̃ (u) up to time t. The price of the bond under the
risk-neutral measure P̃ is given by the conditional expectation of the discounted payoff:

B(t, T ) = Ẽ
[
e−

∫ T
t

R(u)du | Ft

]
. (1.3.18)

Since R(t) is Markov, the bond price depends only on the current time t and the current state R(t). Thus,
there exists a deterministic function g(t, r) such that B(t, T ) = g(t, R(t)).
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Define the discount process D(t) = e−
∫ t
0
R(u)du. The fundamental theorem of asset pricing states that the

discounted price process of any traded asset is a martingale under the risk-neutral measure. For the bond,
this means the process D(t)B(t, T ) is a P̃ -martingale for 0 ≤ t ≤ T . We can verify this using the tower
property of conditional expectation:

Ẽ [D(T )B(T, T ) | Ft] = Ẽ
[
e−

∫ T
0

R(u)du · 1 | Ft

]
= e−

∫ t
0
R(u)duẼ

[
e−

∫ T
t

R(u)du | Ft

]
= D(t)B(t, T ).

Since D(t)B(t, T ) is a martingale, its drift must be zero. We apply Itô’s lemma to find the dynamics of
D(t)B(t, T ) = D(t)g(t, R(t)). First, dD(t) = −R(t)D(t)dt. Next, apply Itô’s lemma to g(t, R(t)). Let
r = R(t).

dg(t, R(t)) =
∂g

∂t
dt+

∂g

∂r
dR(t) +

1

2

∂2g

∂r2
d⟨R⟩t

d⟨R⟩t = (σ
√
R(t))2dt = σ2R(t)dt = σ2rdt.

dg(t, r) =
∂g

∂t
dt+

∂g

∂r
(k(θ − r)dt+ σ

√
rdW̃ (t)) +

1

2

∂2g

∂r2
σ2rdt

=

(
∂g

∂t
+ k(θ − r)

∂g

∂r
+

1

2
σ2r

∂2g

∂r2

)
dt+ σ

√
r
∂g

∂r
dW̃ (t).

Now apply Itô’s product rule to d(D(t)g(t, R(t))):

d(Dg) = gdD +Ddg + d⟨D, g⟩t

= g(−rDdt) +D

[(
∂g

∂t
+ k(θ − r)

∂g

∂r
+

1

2
σ2r

∂2g

∂r2

)
dt+ σ

√
r
∂g

∂r
dW̃ (t)

]
+ 0.

The quadratic covariation term d⟨D, g⟩t = 0 because D(t) has no dW̃ component. Collecting terms:

d(Dg) = D

[
−rg + ∂g

∂t
+ k(θ − r)

∂g

∂r
+

1

2
σ2r

∂2g

∂r2

]
dt+Dσ

√
r
∂g

∂r
dW̃ (t).

For D(t)g(t, R(t)) to be a martingale, the drift term (the coefficient of dt) must be zero. This yields the
following partial differential equation (PDE) for g(t, r):

∂g

∂t
+ k(θ − r)

∂g

∂r
+

1

2
σ2r

∂2g

∂r2
− rg = 0, (1.3.19)

for r > 0 and 0 ≤ t ≤ T . The terminal condition for a zero-coupon bond is that its price at maturity
equals its face value (assumed to be 1):

g(T, r) = 1 for all r ≥ 0. (1.3.20)

An educated guess is that the solution to this PDE with the given terminal condition has an affine form:

g(t, r) = exp{−C(t, T )r −A(t, T )},

where A(t, T ) and C(t, T ) are deterministic functions of t and T . We need to find these functions. Let’s
denote A(t, T ) by A and C(t, T ) by C for brevity, and At =

∂A
∂t , Ct =

∂C
∂t . The partial derivatives of g

are:
∂g

∂t
= −g(Ctr +At),

∂g

∂r
= −Cg, ∂2g

∂r2
= C2g.

Substitute these into the PDE (1.3.19):

−g(Ctr +At) + k(θ − r)(−Cg) + 1

2
σ2r(C2g)− rg = 0.
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Assuming g ̸= 0, we can divide by g:

−(Ctr +At)− kC(θ − r) +
1

2
σ2rC2 − r = 0.

Rearrange and collect terms multiplying r and constant terms:

r

(
−Ct + kC +

1

2
σ2C2 − 1

)
+ (−At − kθC) = 0.

This equation must hold for all r ≥ 0. Therefore, the coefficients of r and the constant term must both be
zero:

−Ct + kC +
1

2
σ2C2 − 1 = 0 (1.3.21)

−At − kθC = 0 (1.3.22)

These are ordinary differential equations (ODEs) for C(t, T ) and A(t, T ) with respect to t. Equation
(1.3.21) is a Riccati equation for C. Equation (1.3.22) is a linear equation for A, once C is known.
Now we apply the terminal condition g(T, r) = 1. From the ansatz:

g(T, r) = exp{−C(T, T )r −A(T, T )} = 1 for all r ≥ 0.

This implies that the exponent must be zero for all r ≥ 0:

−C(T, T )r −A(T, T ) = 0.

For this linear function of r to be identically zero, both coefficients must be zero. This gives the terminal
conditions for the ODEs:

C(T, T ) = A(T, T ) = 0

The ODEs (1.3.21) and (1.3.22) can be solved backwards from time T using these terminal conditions to
find the functions C(t, T ) and A(t, T ), thus fully specifying the bond price B(t, T ) = g(t, R(t)).

End of Recitation 4

We now present an example of pricing interest rate caplets.

Example 1.3.3 (Midterm of 2022, Problem 3). Consider a caplet that pays (R(T )−K)+ at time T , where
K is the strike rate. Its price at time t = 0 is given by the risk-neutral expectation:

Caplet Price = Ẽ
[
D(T )(R(T )−K)+

]
.

Using the change of measure to the T -forward measure PT :

Price = Ẽ
[
D(T )B(T, T )

B(0, T )

B(0, T )

B(T, T )
(R(T )−K)+

]
.

Since B(T, T ) = 1, this becomes:

Price = Ẽ
[
Z(T )B(0, T )(R(T )−K)+

]
= B(0, T )ET

[
(R(T )−K)+

]
,

where ET denotes expectation under PT . To evaluate this, we need the distribution of R(T ) under PT .
Integrating dR(t) = α(t)dt+ σdW̃ (t):

R(T ) = R(0) +

∫ T

0

α(u)du+ σW̃ (T ).
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Substitute W̃ (T ) =WT (T )−
∫ T

0
σ(T − u)du:

R(T ) = R(0) +

∫ T

0

α(u)du+ σ

(
WT (T )− σ

∫ T

0

(T − u)du

)

=

(
R(0) +

∫ T

0

α(u)du− σ2

[
Tu− u2

2

]T
0

)
+ σWT (T )

=

(
R(0) +

∫ T

0

α(u)du− 1

2
σ2T 2

)
︸ ︷︷ ︸

Mean under PT

+σWT (T ).

Under PT , WT (T ) is normally distributed with mean 0 and variance T . Therefore, R(T ) is normally dis-
tributed under PT . The expectation ET [(R(T ) −K)+] is the price of a European call option on a normally
distributed variable, which can be calculated using a formula analogous to the Black-Scholes formula for call
options on log-normal variables.

1.3.3 Heath-Jarrow-Morton (HJM) framework
Reference: [Shr, §1.4].

Short-rate models, such as the Vasicek or Ho-Lee models, postulate dynamics for the instantaneous short
rate R(t). While tractable, they often face practical challenges during calibration to market data. Consider
the Ho-Lee model under the risk-neutral measure P̃, where dR(t) = α(t)dt + σdW̃ (t). The time-t price of
a zero-coupon bond maturing at time T , B(t, T ), is given by EP̃[exp

(
−
∫ T

t
R(u)du

)
|Ft]. For the Ho-Lee

model, this leads to an explicit formula for the bond price at time t = 0:

B(0, T ) = exp

[
−R(0)T −

∫ T

0

α(u)(T − u)du+
1

6
σ2T 3

]
.

Market quotes are typically given in terms of yields, Y (0, T ), where B(0, T ) = exp(−TY (0, T )). Calibration
involves choosing the model parameters, primarily the function α(t) and the constant σ, such that the
model-implied yields Y Model(0, T ) match the observed market yields Y Market(0, T ) for various maturities T .
Equating the exponents gives:

TY Market(0, T ) = R(0)T +

∫ T

0

α(u)(T − u)du− 1

6
σ2T 3.

To extract the function α(T ), one typically differentiates this expression with respect to the maturity T . A
first derivative yields:

d

dT
(TY Market(0, T )) = R(0) +

∫ T

0

α(u)du− 1

2
σ2T 2.

A second derivative with respect to T isolates α(T ):

d2

dT 2
(TY Market(0, T )) = α(T )− σ2T.

Assuming σ is estimated (e.g., from historical data or option prices), this equation allows determining
α(T ). However, market yield data is typically available only for a discrete set of maturities T1, T2, . . . , Tn.
Estimating the second derivative of the yield curve from such sparse and potentially noisy data is numerically
unstable and highly sensitive to the interpolation method used. This practical difficulty motivates alternative
approaches to interest rate modeling.

The Heath-Jarrow-Morton (HJM) framework provides such an alternative by directly modeling the dynamics
of the entire instantaneous forward rate curve f(t, T ), where f(t, T ) is the forward interest rate at time t
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for an instantaneous borrowing or lending period at time T ≥ t. The framework specifies the dynamics
under the physical measure P. Let W (t) be a standard Brownian motion under P. The general HJM model
assumes that for each fixed maturity T , the forward rate f(t, T ) follows an Itô process for t ∈ [0, T ]:

df(t, T ) = α(t, T )dt+ σ(t, T )dW (t), 0 ≤ t ≤ T. (1.3.23)

Here, the drift process α(t, T ) and the volatility process σ(t, T ) are adapted to the filtration Ft generated
by W (t), and may depend on the current state of the entire forward curve or other factors. A key advantage
is the calibration procedure. The initial state of the model, the forward curve f(0, T ) for all T ≥ 0, is taken
directly from the currently observed market term structure of interest rates. Recall that the forward rate is
related to market bond prices or yields by

f(0, T ) = − ∂

∂T
logB(0, T ) =

∂

∂T
(TY (0, T )).

While this still requires computing one derivative from market data, it avoids the problematic second deriva-
tive required in the Ho-Lee calibration example. The HJM framework thus ensures by construction that the
model perfectly fits the initial yield curve.

The primary assets in this framework are the zero-coupon bonds B(t, T ), whose prices are determined by
the forward rates:

B(t, T ) = exp

(
−
∫ T

t

f(t, u)du

)
.

For pricing interest rate derivatives, we need to work under a risk-neutral measure P̃. According to the
fundamental theorems of asset pricing, under P̃, the price process of any traded asset, discounted by the
money market account

M(t) = exp

(∫ t

0

R(s)ds

)
where R(t) = f(t, t) is the short rate, must be a martingale. Equivalently, the instantaneous expected return
on any bond B(t, T ) under P̃ must equal the risk-free rate R(t). This means the dynamics of the bond price
must take the form:

dB(t, T ) = R(t)B(t, T )dt+ (volatility terms) dW̃ (t),

where W̃ (t) is a Brownian motion under P̃. By Girsanov’s theorem, the change of measure from P to P̃ is
associated with a market price of risk process Θ(t), such that dW̃ (t) = dW (t) + Θ(t)dt. The dynamics of
the bond price under P would then be:

dB(t, T ) = (R(t) + (volatility terms)Θ(t))B(t, T )dt+ (volatility terms) dW (t).

A significant challenge arises because we have a continuum of assets (bonds B(t, T ) for all T > t) but only a
single source of randomness W (t) in this specification. For the market to be arbitrage-free and for a unique
risk-neutral measure P̃ to exist (associated with the numeraire M(t)), the market price of risk Θ(t) derived
from the dynamics of any bond B(t, T ) must be the same, independent of the maturity T . This requirement
imposes a strong consistency condition, known as the HJM drift condition, relating the drift α(t, T ) and
volatility σ(t, T ) of the forward rates under P.

To derive this condition, we first need to compute the dynamics of the bond price B(t, T ) under P. By Itô’s
lemma, dB(t, T ) depends on the dynamics of the exponent X(t, T ) =

∫ T

t
f(t, u)du. Let’s find dX(t, T ). We

start by expressing f(t, u) using its definition (1.3.23):

f(t, u) = f(0, u) +

∫ t

0

α(s, u)ds+

∫ t

0

σ(s, u)dW (s).

Substituting this into the definition of X(t, T ):

X(t, T ) =

∫ T

t

(
f(0, u) +

∫ t

0

α(s, u)ds+

∫ t

0

σ(s, u)dW (s)

)
du.
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Assuming sufficient regularity of the coefficients α and σ to apply Fubini’s theorem and its stochastic coun-
terpart (as rigorously justified in the original HJM papers), we can swap the order of integration:

X(t, T ) =

∫ T

t

f(0, u)du+

∫ t

0

(∫ T

t

α(s, u)du

)
ds+

∫ t

0

(∫ T

t

σ(s, u)du

)
dW (s).

Let us define the integrated drift and volatility coefficients:

α∗(t, T ) :=

∫ T

t

α(t, u)du σ∗(t, T ) :=

∫ T

t

σ(t, u)du. (1.3.24)

The differential dX(t, T ) can be found using Leibniz integral rule and properties of Itô integrals. A detailed
derivation shows that (noting that f(t, t) = R(t), the instantaneous short rate)

d

(∫ T

t

f(t, u)du

)
= . . . see [Shr, p. 6] . . .

= [−f(t, t) + α∗(t, T )] dt+ σ∗(t, T )dW (t)

= [−R(t) + α∗(t, T )] dt+ σ∗(t, T )dW (t).

This expression for the dynamics of the exponent is the crucial intermediate step. Applying Itô’s lemma to
B(t, T ) = exp(−X(t, T )) using this result will yield the dynamics dB(t, T ) under P, allowing us to identify
the market price of risk Θ(t) and derive the HJM no-arbitrage condition.

End of the second half of Lecture 7

We can now apply Itô’s lemma to the function g(x) = e−x with x = X(t, T ) to find the dynamics of the
bond price B(t, T ) = g(X(t, T )). Since g′(x) = −e−x and g′′(x) = e−x, we have (see [Shr, p. 7] for a detailed
calculation)

dB(t, T ) = g′(X(t, T ))dX(t, T ) +
1

2
g′′(X(t, T ))(dX(t, T ))2

= B(t, T )

[(
R(t)− α∗(t, T ) +

1

2
(σ∗(t, T ))2

)
dt− σ∗(t, T )dW (t)

]
.

(1.3.25)

This equation describes the bond price dynamics under the physical measure P.

We summarize the above discussion with a theorem.

Theorem 1.3.4. Every arbitrage-free term structure model driven by a single Brownian motion has the
following form. For 0 ≤ t ≤ T ,

df(t, T ) = σ(t, T )σ∗(t, T )dt+ σ(t, T )dW̃ (t), (1.3.26)

dB(t, T ) = R(t)B(t, T )dt− σ∗(t, T )B(t, T )dW̃ (t), (1.3.27)

d(D(t)B(t, T )) = −σ∗(t, T )D(t)B(t, T )dW̃ (t), (1.3.28)

D(t)B(t, T ) = B(0, T ) exp

[
−
∫ t

0

σ∗(u, T )dW̃ (u)− 1

2

∫ t

0

(σ∗(u, T ))
2
du

]
(1.3.29)

From Equation (1.3.2), we have

f(t, T ) = − ∂

∂T
B(t, T ), B(t, T ) = exp

[
−
∫ T

t

f(t, u)du

]

and σ∗(t, T ) is given by (1.3.24):

σ∗(t, T ) =

∫ T

t

σ(t, u)du

In these formulas, W̃ is a Brownian motion under a risk-neutral measure P̃.
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HJM no-arbitrage condition

For the market to be free of arbitrage, there must exist an equivalent risk-neutral measure P̃ under which
the discounted price of any traded asset is a martingale. Specifically, the instantaneous expected return of
any bond under P̃ must equal the risk-free rate R(t). This implies the bond price dynamics under P̃ must
be of the form:

dB(t, T ) = R(t)B(t, T )dt+ (volatility terms) dW̃ (t),

where W̃ (t) is a Brownian motion under P̃. The transition between the measures is achieved via Girsanov’s
theorem, which relates the Brownian motions through a market price of risk process Θ(t), independent of the
specific asset: dW̃ (t) = dW (t) +Θ(t)dt. Comparing the drift term in (1.3.25) with the required risk-neutral
drift R(t)B(t, T )dt, we can identify the risk premium associated with the bond B(t, T ):

Risk Premium =

(
−α∗(t, T ) +

1

2
(σ∗(t, T ))2

)
B(t, T )dt.

The risk premium must equal the product of the volatility coefficient and the market price of risk increment:

Risk Premium = (−σ∗(t, T )B(t, T ))Θ(t)dt.

Equating these two expressions for the risk premium yields:(
−α∗(t, T ) +

1

2
(σ∗(t, T ))2

)
B(t, T )dt = −σ∗(t, T )B(t, T )Θ(t)dt.

Solving for Θ(t), we find:

Θ(t) =
α∗(t, T )− 1

2 (σ
∗(t, T ))2

σ∗(t, T )
=
α∗(t, T )

σ∗(t, T )
− σ∗(t, T )

2
.

A crucial requirement for the absence of arbitrage in the HJM framework is that the market price of risk Θ(t)
must be independent of the bond maturity T . If Θ(t) depended on T , we would need a different change of
measure for each bond, contradicting the existence of a single consistent risk-neutral measure P̃ under which
all discounted bond prices are martingales simultaneously. Therefore, the HJM no-arbitrage condition
(or drift condition) states that the quantity

α∗(t, T )

σ∗(t, T )
− σ∗(t, T )

2
must be independent of T. (1.3.30)

Assuming this condition holds, we denote the resulting market price of risk process by Θ(t).

It is often more convenient to express this condition in terms of the original forward rate drift and volatility
coefficients, α(t, T ) and σ(t, T ). Starting from Θ(t) = α∗(t,T )

σ∗(t,T ) −
σ∗(t,T )

2 , we multiply by σ∗(t, T ):

σ∗(t, T )Θ(t) = α∗(t, T )− 1

2
(σ∗(t, T ))2.

Differentiating both sides with respect to the maturity T , and recalling that ∂
∂T σ

∗(t, T ) = σ(t, T ) and
∂
∂T α

∗(t, T ) = α(t, T ):

σ(t, T )Θ(t) = α(t, T )− 1

2
· 2σ∗(t, T ) · σ(t, T ) = α(t, T )− σ∗(t, T )σ(t, T ).

Rearranging gives the HJM drift condition in its standard form:

α(t, T ) = σ(t, T ) (Θ(t) + σ∗(t, T )) . (1.3.31)

This condition imposes a strict relationship between the drift and volatility structures of the forward rates
under the physical measure P to ensure consistency with no arbitrage. In practice, modelers typically specify
the volatility structure σ(t, T ) (often based on market data like cap/swaption volatilities) and the market
price of risk Θ(t) (which might be set to zero for simplicity or calibrated to market prices reflecting risk
aversion). The drift α(t, T ) under P is then uniquely determined by the no-arbitrage condition (1.3.31).
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Forward rate dynamics under different measures

Having established the no-arbitrage condition and the market price of risk Θ(t), we can now express the
dynamics of the forward rate f(t, T ) and related quantities under the risk-neutral measure P̃ and the T -
forward measure PT .

First, let’s verify the bond price dynamics under P̃. Substitute dW (t) = dW̃ (t)−Θ(t)dt into (1.3.25):

dB(t, T ) = B(t, T )

[(
R(t)− α∗(t, T ) +

1

2
(σ∗(t, T ))2

)
dt− σ∗(t, T )(dW̃ (t)−Θ(t)dt)

]
= B(t, T )

[(
R(t)− α∗(t, T ) +

1

2
(σ∗(t, T ))2 + σ∗(t, T )Θ(t)

)
dt− σ∗(t, T )dW̃ (t)

]
.

Using the relationship

α∗(t, T ) = σ∗(t, T )Θ(t) +
1

2
(σ∗(t, T ))2

derived from the no-arbitrage condition (1.3.30), the drift term simplifies:

R(t)−
(
σ∗(t, T )Θ(t) +

1

2
(σ∗(t, T ))2

)
+

1

2
(σ∗(t, T ))2 + σ∗(t, T )Θ(t) = R(t).

Thus, the bond price dynamics under P̃ are:

dB(t, T ) = B(t, T )
[
R(t)dt− σ∗(t, T )dW̃ (t)

]
. (1.3.32)

Now consider the discounted bond price D(t)B(t, T ), where D(t) = exp
(
−
∫ t

0
R(s)ds

)
is the discount factor

with dD(t) = −R(t)D(t)dt. Using the product rule for Itô processes:

d(D(t)B(t, T )) = D(t)dB(t, T ) +B(t, T )dD(t) + dD(t)dB(t, T ) (1.3.33)

= D(t)
(
B(t, T )[R(t)dt− σ∗(t, T )dW̃ (t)]

)
+B(t, T )(−R(t)D(t)dt) + 0 (1.3.34)

= D(t)B(t, T )R(t)dt−D(t)B(t, T )σ∗(t, T )dW̃ (t)−D(t)B(t, T )R(t)dt (1.3.35)

= −D(t)B(t, T )σ∗(t, T )dW̃ (t). (1.3.36)

Since the drift term is zero, this confirms that the discounted bond price D(t)B(t, T ) is a martingale under
the risk-neutral measure P̃, as required by the no-arbitrage principle.

The process D(t)B(t, T ) plays a crucial role in defining the change of measure from the risk-neutral measure
P̃ to the T -forward measure PT . The T -forward measure uses the bond B(t, T ) as the numeraire. The
Radon-Nikodym derivative process for this change of measure on Ft is given by:

ZT (t) :=
dPT

dP̃

∣∣∣∣
Ft

=
D(t)B(t, T )

D(0)B(0, T )
=
D(t)B(t, T )

B(0, T )
.

From (1.3.36), the dynamics of the Radon-Nikodym process are

dZT (t) = − 1

B(0, T )
D(t)B(t, T )σ∗(t, T )dW̃ (t) = −ZT (t)σ

∗(t, T )dW̃ (t)

By Girsanov’s theorem (using the convention dWT = dW̃ − ⟨d logZT , dW̃ ⟩t), the process WT (t) defined by

dWT (t) = dW̃ (t) + σ∗(t, T )dt (1.3.37)

is a standard Brownian motion under the T -forward measure PT .

Finally, we can summarize the dynamics of the forward rate f(t, T ) under the three different measures:
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1. Under the physical measure P: Substitute the no-arbitrage condition (1.3.31) into the original
definition (1.3.23):

df(t, T ) = [σ(t, T )Θ(t) + σ∗(t, T )σ(t, T )] dt+ σ(t, T )dW (t).

2. Under the risk-neutral measure P̃: Substitute dW (t) = dW̃ (t)−Θ(t)dt into the P-dynamics:

df(t, T ) = [σ(t, T )Θ(t) + σ∗(t, T )σ(t, T )] dt+ σ(t, T )(dW̃ (t)−Θ(t)dt)

= σ∗(t, T )σ(t, T )dt+ σ(t, T )dW̃ (t).

Note that f(t, T ) is generally not a martingale under P̃.
3. Under the T -forward measure PT : Substitute dW̃ (t) = dWT (t)− σ∗(t, T )dt into the P̃-dynamics:

df(t, T ) = σ∗(t, T )σ(t, T )dt+ σ(t, T )(dWT (t)− σ∗(t, T )dt)

= σ∗(t, T )σ(t, T )dt+ σ(t, T )dWT (t)− σ(t, T )σ∗(t, T )dt

= σ(t, T )dWT (t).

The remarkable result is that under the T -forward measure PT , the instantaneous forward rate f(t, T ) for
that specific maturity T follows a martingale process. This property is extremely useful for pricing derivatives
whose payoff depends on the forward rate at maturity, such as caplets and floorlets, as it simplifies expectation
calculations, often leading to Black-Scholes-like formulas (e.g., Black’s formula).

1.3.4 Forward contracts
Reference: [Shr, §2.1, 2.2]. Most of the materials in this section are direct excerpts from [Shr, §2.1, 2.2].

Forward contracts and futures contracts allow agents to lock in prices before actual asset transactions, but
through different mechanisms.

A forward contract is an agreement where at time t, party A commits to pay For(t, T ) to party B at future
time T in exchange for an asset S whose price S(T ) will be unknown until time T . The price For(t, T ) is set
so the contract has zero value at inception. After time t, the contract’s value fluctuates: if the asset price
rises faster than expected, party A benefits; if it falls, party B benefits.

Unlike options, forward contracts require both parties to complete the exchange. When one party gains
value, the other faces a liability, creating counterparty default risk. This risk explains why forwards typically
trade over-the-counter rather than on exchanges. Counterparties often establish collateral agreements or
trade through clearing houses to mitigate this risk.

Definition of the forward price

Consider an asset with price S(t) at time t. Assume that this asset does not pay dividends and there is no
cost associated with holding the asset. Owning some assets, gold for example, requires the payment of a
storage cost. This is called a cost of carry. Financial assets, such as stocks and bonds, do not have a cost of
carry.

According to the definition of risk-neutral measure, the discounted price of assets that do not pay dividends
and have no cost of carry are martingales under risk-neutral measures. Therefore, we assume there is a
probability measure P̃ under which D(t)S(t) is a martingale. As usual, D(t) is the discount process

D(t) = exp

(
−
∫ t

0

R(u)du

)
and R(t) is the spot interest rate. Now consider a forward contract, entered at time t, under which the agent
in the long position agrees to pay cash K at a later time T in exchange for one unit of S at time T , valued
at S(T ). According to the risk-neutral pricing formula, the price of this contract at time t is

1

D(t)
Ẽ[D(T )(S(T )−K) | F(t)] =

1

D(t)
Ẽ[D(T )S(T ) | F(t)]− K

D(t)
Ẽ[D(T ) | F(t)] = S(t)−KB(t, T ).
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The price of this contract at time t is zero if and only if K = S(t)/B(t, T ). Therefore,3

Definition 1.3.5 (forward price). Assume that S is an asset that does not pay a dividend and has zero cost
of carry. For 0 ≤ t ≤ T , the forward price at time t for delivery of one unit of S at time T is

For(t, T ) =
S(t)

B(t, T )
(1.3.38)

Price of a forward contract

The forward price is not the price/value of a forward contract. The forward price is instead the price one
agrees to pay at a future date in order to receive an asset at that future date.

Therefore, there is no reason that discounted forward prices should be martingales under the risk-neutral
measure. We will however see that undiscounted forward prices are martingales under a different measure,
called a forward measure.

Let us consider a forward contract that is entered at time t for delivery of one unit of an asset valued at
S(T ) at time T . We continue to assume that S does not pay a dividend and has zero cost of carry. The
forward price at time t is given by (1.3.38). The forward contract will have value

S(T )− For(t, T ) = S(T )− S(t)

B(t, T )

at time T . At times u between t and T , the price of the forward contract, given by the risk-neutral pricing
formula can be computed using the martingale property for D(t)S(t) and the fact that S(t)/B(t, T ) is
F(u)-measurable to be

P (u; t, T ) =
1

D(u)
Ẽ
[
D(T )

(
S(T )− S(t)

B(t, T )

)∣∣∣∣ F(u)

]
=

1

D(u)
Ẽ[D(T )S(T ) | F(u)]− S(t)

B(t, T )
· 1

D(u)
Ẽ[D(T ) | F(t)]

= S(u)− S(t)B(u, T )

B(t, T )
= B(u, T )

(
S(u)

B(u, T )
− S(t)

B(t, T )

)
, t ≤ u ≤ T

Observations of the price (value) P (u; t, T ) at time u of the forward contract entered at time t for delivery
at time T :

1. At the time the forward contract is entered, its price is zero:

P (t; t, T ) = 0

No money changes hands at time t.
2. At the time the forward contract expires, B(T, T ) = 1 and the price of the forward contract is

P (T ; t, T ) = S(T )− S(t)

B(t, T )
= S(T )− For(t, T )

This is because the forward contract delivers one unit of S in exchange for For(t, T ) in cash.
3We have arrived the definition of forward price by a risk-neutral pricing argument. It can also be obtained by a no-

arbitrage argument as follows. Suppose at time t, an agent shorts S(t)/B(t, T ) zero-coupon bonds that pay 1 at maturity T .
This generates income S(t). With this income, the agent buys one unit of S. Then at time T the agent has one unit of S and
is short S(t)/B(t, T )T -maturity bonds, a position valued at

S(T )−
S(t)

B(t, T )

It costs zero to set up this position at time t. If the forward price For(t, T ) were anything other than S(t)/B(t, T ), then one
could arbitrage the forward contract against the trade just described, going long one and short the other, and make a riskless
profit at no cost. This argument makes clear that we need to assume that S pays no dividend and has zero cost of carry.
Otherwise the portfolio that shorts S(t)/B(t, T )T -maturity bonds and holds one unit of S between times t and T either receives
a dividend or pays a cost of carry, and the argument no longer works.
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3. For times u between t and T , the price of the forward contract is positive if

S(u)

B(u, T )
>

S(t)

B(t, T ))

If the ratio of the asset price to the bond price has grown between times t and u, i.e., if the asset price
has grown at a faster rate than the bond price, then the forward contract takes on positive value. If
the asset price has grown more slowly than the bond price, then the forward contract takes on negative
value. Since the asset price generally does not grow exactly at the rate of the bond price, the price of
the forward contract is generally not zero after time t.

4. Forward contracts are doubly indexed, i.e., P (u; t, T ) depends on the time t the contract is entered
and the time of delivery T . Because of this, there cannot be deep markets in forward contracts. This
is another reason futures contracts, which are indexed only by the time of delivery, are more common.

Forward measure

Undiscounted forward prices are a martingales under a different measure, called the forward measure. This
fact plays an important role in pricing fixed income derivatives because it leads to Black’s formula.

We begin with a Brownian motion W̃ under a risk-neutral measure P̃ and use Girsanov’s Theorem to change
to a different measure and a different Brownian motion.

Definition 1.3.6. Let T ∈ [0, T̄ ] be given and consider the default-free zero-coupon bond price B(t, T ), 0 ≤
t ≤ T . According to Theorem 1.3.4, Equation (1.3.29),

D(t)B(t, T )

B(0, T )
= exp

[
−
∫ t

0

σ∗(u, T )dW̃ (u)− 1

2

∫ t

0

(σ∗(u, T ))
2
du

]
, 0 ≤ t ≤ T

We use this process as the Radon-Nikodym derivative to change to a new measure called the T -forward
measure and denoted PT . Under this measure, the process

WT (t) = W̃ (t) +

∫ t

0

σ∗(u, T )du, 0 ≤ t ≤ T (1.3.39)

is a Brownian motion called the T -forward Brownian motion.

By Girsanov’s theorem, we have

ET [Y ] = Ẽ
[
D(T )B(T, T )

B(0, T )
Y

]
=

1

B(0, T )
Ẽ[D(T )Y ]

for F(T )-measurable random variables Y . If Y is F(t)-measurable for some t ∈ [0, T ], this formula is still
correct, but also

ET [Y ] = Ẽ
[
D(t)B(t, T )

B(0, T )
Y

]
=

1

B(0, T )
Ẽ[D(t)B(t, T )Y ]

If Y is F(t)-measurable for t ∈ [0, T ] and 0 ≤ s ≤ t, then we have Bayes’ rule

ET [Y | F(s)] =
B(0, T )

D(s)B(s, T )
Ẽ
[
D(t)B(t, T )

B(0, T )
Y

∣∣∣∣ F(s)

]
=

1

D(s)B(s, T )
Ẽ[D(t)B(t, T )Y | F(s)] (1.3.40)

We are now ready to state and prove the main result.

Theorem 1.3.7. Assume that S is an asset that does not pay a dividend and has zero cost of carry. Let
T ∈ [0, T̄ ] be given. The forward price of S for delivery at time T (1.3.38) is a martingale under the
T -forward measure PT .

Proof. We let 0 ≤ u ≤ t ≤ T be given. We must show that

ET [For(t, T ) | F(u)] = For(u, T )
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Because For (t, T ) is F(t)-measurable, we can use Bayes’ rule (1.3.40), the definition (1.3.38) of forward
price, and the fact that discounted S is a P̃-martingale to compute

ET [For(t, T ) | F(u)] =
1

D(u)B(u, T )
Ẽ
[
D(t)B(t, T )

S(t)

B(t, T )

∣∣∣∣ F(u)

]
=

1

D(u)B(u, T )
Ẽ[D(t)S(t) | F(u)] =

1

�
��D(u)B(u, T )�

��D(u)S(u) = For(u, T )

Forward interest rate

Consider a model with a spot interest rate R(t). According to the risk-neutral pricing formula, the price at
time t of a default-free zero-coupon bond paying 1 at maturity T is

B(t, T ) = Ẽ
[
e−

∫ T
t

R(u)du | F(t)
]

Therefore,

− ∂

∂T
B(t, T ) = −Ẽ

[
∂

∂T
e−

∫ T
t

R(u)du

∣∣∣∣ F(t)

]
= Ẽ

[
R(T )e−

∫ T
t

R(u)du | F(t)
]
=

1

D(t)
Ẽ[D(T )R(T ) | F(t)]

According to the risk-neutral pricing formula, this is the price at time t of an asset that pays R(T ) at time
T . We call this price

S(t) := − ∂

∂T
B(t, T )

The asset that pays R(T ) at time T does not pay a dividend and has zero cost of carry, so its forward price
is

S(t)

B(t, T )
= −

∂
∂TB(t, T )

B(t, T )
= − ∂

∂T
logB(t, T )

This is the forward interest rate (1.3.1) of Definition 1.3.1. We thus have a second interpretation of the
forward rate. In that part (§1.3.1) we saw the f(t, T ) is the instantaneous rate that can be locked in a time
t for borrowing or investing at time T ; this is how we understood (1.3.1). Here we see that f(t, T ) is the
forward price at time t for a contract that delivers R(T ) at time T .

Example 1.3.8 (Forward rates in the Ho-Lee model). Recall the Ho-Lee model whose differential is

df(t, T ) = σ2(T − t)dt+ σdW̃ (t) = σ(dW̃ (t) + σ(T − t)dt), 0 ≤ t ≤ T (1.3.41)

We have just seen that this is the forward price of a contract that pays R(T ) at time T . Therefore, Theorem
1.3.7 implies that f(t, T ) is a martingale under the T -forward measure. We verify this.

In the Ho-Lee model, σ∗(t, T ) = (T − t)σ. Therefore, the forward Brownian motion (1.3.39) is

WT (t) = W̃ (t) + σ

∫ t

0

(T − u)du (1.3.42)

which implies that
dWT (t) = dW̃ (t) + σ(T − t)dt (1.3.43)

Equation (1.3.41) can be rewritten as

df(t, T ) = σdWT (t), 0 ≤ t ≤ T

Because WT is a Brownian motion under PT , f(t, T ) is a PT -martingale. In addition, we see from Definition
2.4 and (1.53) that in the Ho-Lee model the Radon-Nikodym derivative P̃-martingale for the change of measure
from P̃ to PT is

D(t)B(t, T )

B(0, T )
= exp

[
−σ
∫ t

0

(T − u)dW̃ (u)− 1

2
σ2

∫ t

0

(T − u)2du

]



§1.3. Fixed income models 51

1.3.5 Black’s formula

Reference: [Shr, §2.3]. Most of the materials in this section are direct excerpts from [Shr, §2.3].

The Black-Scholes formula, published in 1974, revolutionized finance by enabling the pricing and trading of
derivative securities for both hedging and speculation. This work by Black, Scholes, and Merton established
volatility as the standard quoting method for equity options.

European call prices depend on five factors: interest rate, time to expiration, underlying asset price, asset
volatility, and strike price. With constant interest rates typical for short-lived equity options, prices effectively
depend on just three variables: expiration time, asset price, and volatility.

Since expiration time and asset price constantly change, quoting option prices directly is impractical. Instead,
specifying the volatility for the Black-Scholes formula provides a more stable quoting method. This approach
eliminates the need to update quotes when time passes or asset prices fluctuate.

Fischer Black later joined Goldman Sachs’ fixed income division, where he adapted his work for fixed income
derivatives. Unlike equity options, these long-term instruments operate in changing interest rate environ-
ments. Black developed a formula using forward prices and forward measures to maintain volatility as an
effective quoting convention for these derivatives.

Derivation of Black’s formula

Consider a model in which the spot interest rate R(t) is not necessarily constant. In this model, suppose
S is an asset that does not pay a dividend and has zero cost of carry. Assume further that S(t) > 0 for
0 ≤ t ≤ T almost surely. According to the risk-neutral pricing formula, a European call on S expiring at
time T with strike price K has time-zero price

C(0) = Ẽ
[
D(T )(S(T )−K)+

]
(1.3.44)

In models of fixed-income markets, the asset S is not a stock. It might be a bond. More frequently, it is a
contract that makes a payment at a future date based on interest rates over a period of time just prior to
that date. The computation of the right-hand side of (1.3.44) is difficult because of the correlation between
D(T ) and (S(T )−K)+.

Suppose that D(T ) and (S(T )−K)+ are uncorrelated under P̃. In this case, we can write

C(0) = Ẽ[D(T )]Ẽ
[
(S(T )−K)+

]
= B(0, T )Ẽ

[
(S(T )−K)+

]
(1.3.45)

However, in fixed income applications, the second equality in (1.3.45) is always incorrect. We resolve this
issue by recalling the T -forward measure PT of Definition 1.3.6. We use up the troubling term D(T ) in
(1.3.45) by changing to expectation ET under PT . Thus, in place of (1.3.45), we write

C(0) = B(0, T ) Ẽ
[
D(T )B(T, T )

B(0, T )
(S(T )−K)+

]
= B(0, T )ET

[
(S(T )−K)+

]
, (1.3.46)

where noting that B(T, T ) ≡ 1 and that B(0, T ) is not random. We obtain a formula much like (1.3.45), but
now D(T ) and (S(T )−K)+are allowed to be correlated and the expectation in the final result is computed
under PT . Of course, to compute this expectation, we need to know the distribution of S(T ) under PT .

Recall that the forward price at time t for delivery of one unit of S at time T is

For(t, T ) =
S(t)

B(t, T )
, 0 ≤ t ≤ T

According to Theorem 1.3.7, For(t, T ) is a martingale under PT . But we have assumed that S(t) is strictly
positive for all t ∈ [0, T ], so For(t, T ) is strictly positive for all t ∈ [0, T ]. A strictly positive martingale is a
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generalized geometric Brownian motion. In other words, there is an adapted process σ(t), 0 ≤ t ≤ T , such
that for 0 ≤ t ≤ T ,

dFor(t, T ) = σ(t)For(t, T )dWT (t) (2.18)

For(t, T ) = For(0, T ) exp

[∫ t

0

σ(u)dWT (u)− 1

2

∫ t

0

σ2(u)du

]
. (2.19)

But S(T ) = For(T, T ), and therefore

S(T ) = For(T, T ) = For(0, T ) exp

[∫ T

0

σ(u)dWT (u)− 1

2

∫ T

0

σ2(u)du

]
(1.3.47)

We now consider special cases.

The first case is when the volatility is either a positive or negative constant ±σ4 and thus For(t, T ) is a
geometric Brownian motion under PT . In particular, (1.3.47) reduces to

S(T ) = For(0, T ) exp

[
±σWT (T )− 1

2
σ2T

]
(1.3.48)

and ET [(S(T )−K)+]is given by the Black-Scholes formula.

Theorem 1.3.9 (Black’s formula with constant volatility). Let S be an asset that does not pay a dividend
and has zero cost of carry. Let C(0) be the price at time zero of a European call option on S with strike
price K expiring at time T. Let σ be a positive constant, and assume that the forward price For(t, T ) of S
for delivery at time T has volatility σ or −σ. Then

C(0) = B(0, T ) (For(0, T )N (d+)−KN (d−)) = S(0)N (d+)−KB(0, T )N (d−) , (1.3.49)

where
d± =

1

σ
√
T

[
log

For(0, T )

K
± 1

2
σ2T

]
. (1.3.50)

Proof. If the forward price volatility is σ, then the first equation in (1.3.49) together with (1.3.50) follow
from the Black-Scholes formula applied to compute ET [(S(T )− K)+] using formula (1.3.48) for S(T ) and
then using formula (1.3.46) for C(0).

If the forward price volatility is −σ, we observe that −σWT (T ) and σWT (T ) are both normal with expected
value zero and variance σ2T under PT . Therefore,

S(T ) = For(0, T ) exp

[
−σWT (T )− 1

2
σ2T

]
and

Ŝ(T ) = For(0, T ) exp

[
σWT (T )− 1

2
σ2T

]
have the same distribution. It follows that

Ẽ
[
(S(T )−K)+

]
= Ẽ

[
(Ŝ(T )−K)+

]
and the computation of this last quantity proceeds by the standard Black-Scholes argument. In particular,
we obtain formula (1.3.50) for d±with leading term 1/σ

√
T , not −1/σ

√
T .

Regardless of whether the volatility of the forward price is σ or −σ, the second formula in (1.3.49) follows
from the first and the fact that For(0, T ) = S(0)/B(0, T ).

4In Theorem 1.3.9 we permit the volatility to be negative because in fixed-income applications the volatility of assets often
has the opposite sign from the volatility of the spot rate, and so one of these must be negative. See for instance Example 1.3.11.
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Remark. In the special case that the interest rate is a constant r and the volatility σ is positive, we have

B(0, T ) = e−rT and For(0, T ) = erTS(0)

In this case (1.3.49) reduces to the usual Black-Scholes formula

C(0) = S(0)N (d+)− e−rTKN (d−)

where

d± =
1

σ
√
T

[
log

erTS(0)
)

K
± 1

2
σ2T

]
=

1

σ
√
T

[
log

S(0)

K
+

(
r ± 1

2
σ2

)
T

]
The beauty of Black’s formula, however, is that no assumption is made on the interest rate. The only
assumption is that the forward price of the underlying asset rather than the asset price itself has constant
volatility.

Remark. Using the independence lemma, one can derive the following dynamic version of Black’s formula.
Under the assumptions of Theorem 1.3.9, the call price at time t, denoted by

C(t) =
1

D(t)
Ẽ
[
D(T )(S(T )−K)+ | F(t)

]
, 0 ≤ t ≤ T

is given by
C(t) = S(t)N (d+(t,For(t, T )))−KB(t, T )N (d−(t,For(t, T ))) , 0 ≤ t < T, (1.3.51)

where

d±(t, x) =
1

σ
√
T − t

[
log

x

K
± 1

2
σ2(T − t)

]
.

End of the first half of Lecture 8

We next consider the case that σ(u) is a nonrandom function of time. First note that one term on the
right-hand side of (1.3.47) follows∫ T

0

σ(u)dWT (u) ∼ NPT

(0, V (T )) , V (T ) :=

∫ T

0

σ2(u)du.

We define5

σ̄ :=

√
V (T )

T
=

√
1

T

∫ T

0

σ2(u)du (1.3.52)

Then

S(T ) = For(0, T ) exp

[∫ T

0

σ(u)dWT (u)− 1

2

∫ T

0

σ2(u)du

]
has the same distribution as (noting that WT (T ) ∼ N(0, T ))

S̃(T ) = For(0, T ) exp

[
σ̄WT (T )− 1

2
σ̄2T

]
,

which is the solution to the SDE dS̃(t) = σ̄S̃(t)dWT (t), S̃(0) = For(0, T ). This implies that

ET
[
(S(T )−K)+

]
= ET

[
(S̃(T )−K)+

]
This last quantity lends itself to a standard Black-Scholes calculation. This permits us to extend Black’s
formula to the case of nonrandom, time-dependent volatility:

5Note that σ̄ is positive and we do not need to write |σ̄| in Theorem 1.3.10.
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Theorem 1.3.10 (Black’s formula with nonrandom, time-dependent volatility). Let S be an asset that does
not pay a dividend and has zero cost of carry. Let C(0) be the price at time zero of a European call on S
with strike price K expiring at time T . Assume that the forward price For(t, T ) of S for delivery at time T
has nonrandom, time-dependent volatility6 σ(u), 0 ≤ u ≤ T . Then

C(0) = B(0, T ) (For(0, T )N (d+)−KN (d−)) = S(0)N (d+)−KB(0, T )N (d−) (1.3.53)

where
d± =

1

σ̄
√
T

[
log

For(0, T )

K
± 1

2
σ̄2T

]
Remark. Again, one can use independence lemma to show that under the assumptions of Theorem 1.3.10,
the call price at time t is given by (1.3.51), where now

d±(t, x) =
1

σ̄(t)
√
T − t

[
log

x

K
± 1

2
σ̄2(t)(T − t)

]
, σ̄(t) :=

√
1

T − t

∫ T

t

σ2(u)du.

End of Recitation 5

Example 1.3.11 (Bond option in the Ho-Lee model). Recall that in the Ho-Lee model, the spot interest rate
has differential

dR(u) = α(u)du+ σdW̃ (u), 0 ≤ u ≤ T̄ (1.3.54)

and bond price are given by

B(t, T ) = exp

[
−(T − t)R(t)−

∫ T

t

α(u)(T − u)du+
1

6
σ2(T − t)3

]
(1.3.55)

Let 0 < T1 < T2 ≤ T̄ be given. For 0 ≤ t ≤ T1, the forward price at time t for delivery at time T1 of the
T2-maturity bond is7

ForB (t, T1) =
B (t, T2)

B (t, T1)
= . . . (see Equation 1.3.56) . . . = eY (t)

where

Y (t) := − (T2 − T1)R(t)− (T2 − T1)

∫ T1

t

α(u)du−
∫ T2

T1

α(u) (T2 − u) du

+
1

6
σ2 (T2 − T1)

3
+

1

2
σ2 (T2 − T1)

2
(T1 − t) +

1

2
σ2 (T2 − T1) (T1 − t)

2

with differential

dY (t) = . . . (see Equation 1.3.57) . . . = − (T2 − T1)σdW̃ (t)− 1

2
σ2 (T2 − T1)

2
dt− σ2 (T2 − T1) (T1 − t) dt,

so that
dY (t)dY (t) = (T2 − T1)

2
σ2dt.

Because ForB (t, T1) = f(Y (t)) where f ′(y) = f ′′(y) = f(y) = ey, we have

dForB (t, T1) = . . . (see Equation 1.3.58) . . . = − (T2 − T1)σForB (t, T1) dW
T1(t)

where

WT1(t) := W̃ (t) + σ

∫ t

0

(T1 − u) du, 0 ≤ t ≤ T1 (1.3.59)

6We do not require σ(u) to be positive. However, we do require that σ̄ given by (1.3.52) is non-zero and hence positive so
that we can divide by it in the formula for d±.

7We use the subscript B in the notation ForB to indicate that this is the forward price of a bond.
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is the T1-forward Brownian motion given by (1.3.42) with differential given by (1.3.43) when T in those
equations is replaced by T1. Under PT1 , the forward price For B (t, T1) is a martingale. We have identified
the volatility of the T1-forward price of the T2-maturity bond. It is the constant − (T2 − T1)σ.

According to Black’s formula with constant volatility (Theorem 1.3.9), a call on the T2-maturity bond expiring
at time T1 with strike price K has time-zero price

C(0) = B (0, T2)N (d+)−KB (0, T1)N (d−) , (1.3.60)

where
d± =

1

(T2 − T1)σ
√
T1

[
log

B (0, T2)

KB (0, T1)
± 1

2
(T2 − T1)

2
σ2T1

]
. (1.3.61)

1.3.6 Secured overnight funding rate (SOFR)
Reference: [Shr, §3.2 – 3.4].

Prior to 2008, the London Interbank Offered Rate (LIBOR) was the primary benchmark for short-term
unsecured borrowing costs. LIBOR was published by the British Bankers’ Association: each day the Bank
of England solicited quotes from a panel of banks, discarded the highest and lowest submissions, and averaged
the remainder. In the wake of the 2008 financial crisis it became clear that LIBOR was highly susceptible
to manipulation; several traders were prosecuted and the benchmark was discontinued for many tenors in
2013.

In response, market participants adopted the Secured Overnight Financing Rate (SOFR), a transaction-based
overnight rate reflecting the cost of borrowing cash collateralized by U.S. Treasury securities in the tri-party
repurchase agreement (repo) market.

Denote by R(u) the overnight repo rate realized at time u. A repurchase agreement executed at the close of
trading on day u involves

sell Treasury securities at time u,
and agree to repurchase them (slightly more) at time u+∆,

thereby locking in a one-day interest rate.

Tj−1 Tj

τ = Tj − Tj−1

Figure 1.3.3: Time interval of length τ over which the SOFR average is computed.

In Figure 1.3.3, [Tj−1, Tj ] is a term interval (e.g. three months, so that τ = 1/4 year). By rolling over
overnight repos each day in this interval, the cumulative gross return is

Tj−∆∏
u=Tj−1

(1 +R(u)∆) ≈ exp

(∫ Tj

Tj−1

R(u)du

)
.

We define the (averaged) SOFR rate over [Tj−1, Tj ] as the unique constant SOFR[Tj−1,Tj ] satisfying

exp

(∫ Tj

Tj−1

R(u)du

)
= 1 + τSOFR[Tj−1,Tj ].

Hence

SOFR[Tj−1,Tj ] =
exp

(∫ Tj

Tj−1
R(u)du

)
− 1

τ
(τ = Tj − Tj−1) .
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In the next lecture we will take
R(u), u ∈ [0, T ],

as a continuous-time stochastic process and study the evolution of term SOFR averages and related interest-
rate derivatives.

End of the second half of Lecture 8

(Recap) Let 0 ≤ Tj < Tj+1 be consecutive accrual dates and set τ := Tj+1−Tj (in practice τ = 1/4 ∼ 90 days,
τ = 1/2 ∼ 180 days). Denote by r(t) the (continuously-compounded) short rate and by

D(t) = exp

(
−
∫ t

0

r(u) du

)
, B(t, T ) =

Ẽ [D(T ) | Ft]

D(t)

the discount factor and the time-t price of a zero-coupon bond maturing at T under the risk-neutral measure
P̃.

Definition 1.3.12 (Average SOFR). The realised average SOFR for the period [Tj , Tj+1] is

S (Tj+1;Tj , Tj+1) =
1

τ

(
D(Tj)

D(Tj+1)
− 1

)
=

1

τ

(
exp

(∫ Tj+1

Tj
r(u) du

)
− 1
)
.

Thus

1 + τS = exp

(∫ Tj+1

Tj

r(u) du

)
;

this follows from rolling overnight repo loans and replacing 1 + δr by eδr for the daily tenor δ.

Proposition 1.3.13 (no-arbitrage time-t price of average SOFR). For t ≤ Tj+1 the no-arbitrage price
S(t;Tj , Tj+1) of S(Tj+1;Tj , Tj+1) is

S(t;Tj , Tj+1) =
1

D(t)
Ẽ [D(Tj+1)S(Tj+1;Tj , Tj+1) | Ft] =


B(t, Tj)−B(t, Tj+1)

τ
, t ≤ Tj ,

D(Tj)

τD(t)
− B(t, Tj+1)

τ
, t ∈ [Tj , Tj+1].

Proof. Insert the definition of S(Tj+1;Tj , Tj+1) and use Ẽ[D(T ) | Ft] = D(t)B(t, T ), taking into account
whether D(Tj) is Ft-measurable (t ≥ Tj) or not.

Definition 1.3.14 (Forward SOFR). The forward SOFR rate observed at time t ≤ Tj+1 for the period
[Tj , Tj+1] is

ForS (t;Tj , Tj+1) :=
S(t;Tj , Tj+1)

B(t, Tj+1)
.

Consequently

ForS(t;Tj , Tj+1) =


B(t, Tj)

τB(t, Tj+1)
− 1

τ
, t ≤ Tj ,

D(Tj)

τD(t)B(t, Tj+1)
− 1

τ
, t ∈ [Tj , Tj+1].

Unlike LIBOR, the realised average SOFR is fixed at the end of the accrual period, so ForS is the tradable
rate that locks-in today the future average funding cost.



58 Ch.1. Lecture Notes

Example 1.3.15 (Caplet on the compounded SOFR). Fix an accrual period [Tj , Tj+1] of length τ = Tj+1−
Tj. The caplet pays

(S(Tj+1;Tj , Tj+1)−K)
+ at Tj+1,

where the realised average SOFR S(Tj+1;Tj , Tj+1) is given by S = τ−1 (D(Tj)/D(Tj+1)− 1) .

Because S(Tj+1;Tj , Tj+1) = ForS(Tj+1;Tj , Tj+1), the payoff can be written as

(ForS(Tj+1;Tj , Tj+1)−K)
+
,

so the caplet is a European call on the forward SOFR.

For any valuation time t ≤ Tj+1,

Caplet(t) =
1

D(t)
Ẽ
[
D(Tj+1) (ForS(Tj+1;Tj , Tj+1)−K)

+ | Ft

]
.

(Change to the Tj+1-forward measure) Introduce the density

Zt =
D(t)B(t, Tj+1)

B(0, Tj+1)
,

dPTj+1

dP̃

∣∣∣∣
Ft

= Zt.

Then Fs := ForS(s;Tj , Tj+1) is a PTj+1-martingale, and Caplet(t) becomes

Caplet(t) = B(t, Tj+1)EPTj+1
[(
FTj+1

−K
)+ | Ft

]
.

(Making the payoff log-normal) The explicit form of Fs (Definition 1.3.14) contains a constant shift −τ−1.
Set F̂s := Fs + τ−1. Then F̂s is a quotient of discounted bond prices, hence a geometric Brownian motion
under PTj+1 . The payoff rewrites as (

F̂Tj+1
− (K + τ−1)

)+
.

Under Ho-Lee (dr = σ dW̃ ) every bond price is log-normal with volatility σB(t, T ) = −σ (T − t). For t ≤ Tj

the ratio F̂t =
B(t,Tj)

τB(t,Tj+1)
inherits the constant volatility

σF = −σ (Tj+1 − Tj).

For t ∈ [Tj , Tj+1] one obtains the time-dependent volatility σF (t) = −σ (Tj+1 − t). Hence, under PTj+1

ln
F̂Tj+1

F̂t

∼ N

(
−1

2
v(t), v(t)

)
, v(t) =

∫ Tj+1

t

σF (u)
2 du = σ2

(Tj+1 − Tj)
2 (Tj+1 − t), t ≤ Tj ,

(Tj+1−t)3

3 , t ≥ Tj .

Applying the Black formula with spot Ft, strike K, and variance v(t) gives

Caplet(t) = τ B(t, Tj+1) (FtN(d+)−KN(d−))

where

d± =
ln(Ft/K)± 1

2v(t)√
v(t)

, Ft = ForS(t;Tj , Tj+1).

(The pre-factor τ restores the industry convention that caplet notionals are expressed in rate per annum.)

To summarize the section, rolling overnight repos links the short rate to the realised average SOFR:

S = (τ−1)(D(Tj)/D(Tj+1)− 1).

The tradable forward SOFR
ForS = S/B( · , Tj+1)

is known at the start of the interval and serves as LIBOR’s analogue. Caplets and other SOFR derivatives
are valued by switching to the Tj+1-forward measure and applying the Black formula once the volatility of
ForS is identified (constant in Ho-Lee, piece-wise in general).
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1.3.7 Futures contracts
Reference: [Shr, §2.4]. Most of the materials in this section are direct excerpts from [Shr, §2.4].

Futures contracts also present a way of locking in a price in advance, but without the default risk inherent
in forward contracts. These contracts are traded on exchanges. Suppose at time t0 an agent wishes to lock
in a price for purchase of one unit of an underlying asset S at a later time T . She can do that by taking
a long futures position on S. This generates a cash flow depending on changes in the futures price for the
asset between times t0 and T . The futures price is set by supply and demand at the exchange. An agent
who buys a futures contract pays nothing for the contract but must deposit money into a margin account8
held by the exchange. The next day, if the futures price has increased, the agent will receive the amount of
the increase added to her margin account. If the futures prices has decreased, the amount of the decrease is
deducted from her margin account. This process is called marking to market or daily resettlement.

Suppose at time t0 an agent takes a long futures position with delivery at a later date tn = T . Suppose at
the end of day tj , j = 0, 1, . . . , n, the futures price for time- T delivery is Fut (tj , T ). The futures price on the
delivery date T = tn is always the price of the underlying asset S(T ) at that date, i.e., Fut (tn, T ) = S(T ). On
each of the dates tj , j = 1, . . . , n, the agent with the long futures position receives Fut (tj , T )−Fut (tj−1, T ).
If this quantity is negative, “receives” means that money is deducted from the agent’s margin account. The
total amount received by the long futures position between the time t0 when the long position is entered and
the time T of delivery is

(Fut (t1, T )− Fut (t0, T )) + · · ·+ (Fut (tn−1, T )− Fut (tn−2, T )) + (Fut (tn, T )− Fut (tn−1, T ))

= Fut (tn, T )− Fut (t0, T ) = S(T )− Fut (t0, T )

If the agent holding the long futures position wishes to own the asset, at time T she pays market price
S(T ). From the cash flow associated with the long futures position, she has received S(T ), which covers this
purchase, and has paid Fut (t0, T ). Thus the futures price Fut (t0, T ) at time t0 has been locked in as the
net amount the agent pays to acquire the asset S at time T .

Because the forward contract results in a single payment at time T , whereas a futures contract generates
a cash flow between inception and delivery, the interest rate, especially if it is random, plays an important
role in the difference between the two kinds of contracts and the resulting difference in forward prices and
futures prices.

We start with discrete-time setting.

Let {tj}j=0,1,...,n be an increasing discrete time grid with t0 = 0 and tn = T . We work under a risk-neutral
measure P̃ and denote by R(tj) the (forward) short rate over [tj , tj+1). Define the discount factor

D(tj) = exp

[
−

j−1∑
i=0

R(ti) (ti+1 − ti)

]
.

Note that D(tj) is F(tj−1)-measurable and strictly positive.

For a payoff S(T ) at time T , define the discrete-time futures price by

Fut(tj , T ) = Ẽ
[
S(T )

∣∣ F(tj)
]
.

(Martingale property via zero-cost settlement) A futures contract is marked-to-market at each tj , with payoff

∆j = Fut(tj+1, T ) − Fut(tj , T ),

settled at tj+1. The present value at tj of that settlement is

1

D(tj)
Ẽ [D(tj+1)∆j | F(tj)] .

8Money is deposited into the margin account for reasons other than the one described here. For example, a deposit into the
margin account may be required because of the risk associated with the agent’s position. For this discussion, we consider only
money credited or debited to the account as a result of changes in the futures price.
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Zero-cost entry and exit require this to vanish. Since D(tj+1)/D(tj) ̸= 0 and is F(tj)-measurable,

Ẽ [Fut(tj+1, T ) | F(tj)] = Fut(tj , T ),

i.e. {Fut(tj , T )} is a P̃-martingale.

We now turn to continuous-time setting.

Let {r(u)}u≥0 be a progressively measurable short-rate process, and set

D(t) = exp

[
−
∫ t

0

r(u) du

]
, 0 ≤ t ≤ T,

the continuous-time discount factor. Again work under the risk-neutral measure P̃.

Definition 1.3.16 (futures price). Let S(T ) be an F(T )-measurable random variable in a model with a
risk-neutral measure P̃. The futures price at time t for delivery of one unit of S at time T is

Fut(t, T ) = Ẽ[S(T ) | F(t)], 0 ≤ t ≤ T

In particular, Fut(T, T ) = S(T ).

(Zero-value of the futures contract) In continuous time the daily settlements
∑
D∆Fut become the stochastic

integral ∫ T

t

D(u) d [Fut(u, T )] .

By the risk-neutral pricing formula, the value at time t of entering and then immediately exiting the contract
is

1

D(t)
Ẽ

[∫ T

t

D(u) dFut(u, T )
∣∣∣ F(t)

]
.

Since Fut(·, T ) is a P̃-martingale, the martingale representation theorem gives

dFut(u, T ) = Ψ(u) dW̃ (u)

for some adapted process Ψ. Thus ∫ T

t

D(u)Ψ(u) dW̃ (u)

is an Itô integral whose conditional expectation (given F(t)) vanishes. Hence the futures contract has zero
value at all times:

1

D(t)
Ẽ

[∫ T

t

D(u) dFut(u, T )
∣∣∣ F(t)

]
= 0.

In summary, futures contract value is always zero, both in discrete and continuous time, because daily (or
instantaneous) marked-to-market settlements cost nothing to enter and exit; in other words, the value of the
contract is identically zero under no-arbitrage. Futures price is the conditional expectation of the terminal
payoff.

Theorem 1.3.17 (Forward-futures spread). Assume S is an asset that does not pay a dividend and has zero
cost of carry. Let For(0, T ) be the time-zero forward price for delivery of one unit of S at time T , and let
Fut(0, T ) be the time-zero futures price for the same. Then

For(0, T )− Fut(0, T ) =
1

B(0, T )
C̃ov[D(T ), S(T )]

where C̃ov denotes covariance under the risk-neutral measure P̃.
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Proof. By the definition of forward and futures prices with t = 0, the fact the D(t)S(t), 0 ≤ t ≤ T , is a
P̃-martingale, and the formula B(0, T ) = Ẽ[D(T )] to compute

For(0, T )− Fut(0, T ) =
S(0)

B(0, T )
− Ẽ[S(T )]

=
1

B(0, T )
[Ẽ[D(T )S(T )]− Ẽ[D(T )]Ẽ[S(T )]] =

1

B(0, T )
C̃ov[D(T ), S(T )]

Roughly speaking, forward-futures spread says that if the asset price S is negatively correlated with the
interest rate, so that D(T ) is positively correlated with S(T ), then For(0, T ) > Fut(0, T ). In the case that
S is negatively correlated with the interest rate, the long futures position tends to receive cash when the
interest rate is falling and pay cash when the interest rate is rising. This is less favorable than the long
forward position, which does not pay cash until the delivery date. To compensate for this disadvantage,
the price Fut(0, T ) ultimately paid by the long futures position is lower than the price For(0, T ) paid upon
delivery by the long forward position. The correlation considered here is under a risk-neutral measure, not
the physical measure, but the direction of correlation under these two measures is generally the same.

Note that, if the interest rate is not random, the D(T ) is not random, and thus its correlation with S(T ) is
zero, so we have

Corollary 1.3.18. Assume S is an asset that does not pay a dividend and has zero cost of carry. If the
interest rate is not random, then the forward price and the futures price for delivery of one unit of S at time
T are equal.

Example 1.3.19 (Forward-futures interest rate spread in the Ho-Lee model). Recall that the forward interest
rate in the Ho-Lee model is

f(t, T ) = R(t) +

∫ T

t

α(u)du− 1

2
σ2(T − t)2, 0 ≤ t ≤ T

In addition to being an instantaneous interest rate that can be locked in at time t for borrowing at time T ,
this is the forward price ForR(t, T )

9 of the contract that pays R(T ) at time T .

In the Ho-Lee model, we have

R(T ) = R(t) +

∫ T

t

α(u)du+ σ(W̃ (T )− W̃ (t))

from which we see that the futures price10 at time t for the payment R(T ) at time T is11

FutR(t, T ) = Ẽ[R(T ) | F(t)] = R(t) +

∫ T

t

α(u)du, 0 ≤ t ≤ T

It follows that
dFutR(t, T ) = dR(t)− α(t)dt = σdW̃ (t)

The futures price is a martingale under the risk-neutral measure. In this case, the price R(T ) of the underlying
asset delivered at time T is positively correlated with the interest rate and negatively correlated with D(T ).
We have the opposite of the situation described above. The interest rate forward-futures spread is

ForR(t, T )− FutR(t, T ) = −1

2
σ2(T − t)2

which is negative. Recall that σ appearing in this formula is the volatility of the interest rate.
9We use the subscript R in the notation ForR to indicate that is is a forward interest rate.

10Interest rate futures have a non-intuitive quotation convention, namely, 100 − 100Fut(t, T ). If the interest rate futures in
our notation is 0.04, i.e., 4%, then the quote is 96.

11We use the subscript R in the notation FutR to indicate that this is an interest rate futures.
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Trading futures contracts

Futures contracts are traded on many asset classes, e.g., stock indices, agricultural commodities, metals,
and oil. There are even futures contracts on non-asset time series such as weather. Futures can be easier to
trade than the underlying assets, and hence are often used for hedging. In this section, we consider futures
trading and give some examples of replication (hedging) with futures.

Suppose at time t, 0 ≤ t ≤ T , an agent holds ∆(t) futures contracts and finances her trading using the
money market account with interest rate R(t), 0 ≤ t ≤ T . For now let us assume that the interest paid
on the agent’s margin account is also R(t). The agent’s portfolio consists of the futures contracts held and
cash. Some of the cash is in the margin account and the remainder is invested or borrowed at the money
market rate R(t). The position in futures always has zero value and thus does not contribute to the agent’s
portfolio value. In other words, all the agent’s portfolio value is in cash. The futures contracts held affect
the differential of the portfolio value, but do not contribute to the portfolio value itself. Thus,

dX(t) = Φ(t)dFut(t, T ) +R(t)X(t)dt (1.3.62)

and
d(D(t)X(t)) = D(t)(−R(t)X(t) + dX(t)) = D(t)Φ(t)dFut(t, T ) (1.3.63)

Example 1.3.20 (Black-Scholes futures hedging). Consider a geometric Brownian motion price process
S(t) with differential

dS(t) = rS(t)dt+ σS(t)dW̃ (t), 0 ≤ t ≤ T

where the interest rate r and the volatility σ > 0 are constant and W̃ is a Brownian motion under a risk-
neutral measure P̃. The futures price for delivery of one unit of S at time T is

FutS(t, T ) = Ẽ[S(T ) | F(t)] = erT Ẽ
[
e−rTS(T ) | F(t)

]
= er(T−t)S(t) (1.3.64)

(This is also the forward price because the interest rate is constant. In particular, B(t, T ) = e−r(T−t), so
ForS(t, T ) = S(t)/B(t, T ) = er(T−t)S(t).) The differential of the futures price is

dFutS(t, T ) = −rer(T−t)S(t)dt+ er(T−t)dS(t) = σer(T−t)S(t)dW̃ (t)

As always, the futures price is a martingale under the risk-neutral measure.

Consider an agent who at each time t holds Φ(t) futures contracts and finances trading using the money
market account. From (1.3.63) and (1.3.64), we have

d
(
e−rtX(t)

)
= σer(T−2t)Φ(t)S(t)dW̃ (t) (1.3.65)

This discounted portfolio process is a martingale under the risk-neutral measure. For 0 ≤ t ≤ T , the price at
time t of a European call on S expiring at time T with strike price K is

c(t, S(t)) = S(t)N (d+(t))− e−r(T−t)KN (d−(t))

where
d±(t) =

1

σ
√
T − t

[
log

S(t)

K
+

(
r ± 1

2
σ2

)
(T − t)

]
The differential of the discounted call price is

d
(
e−rtc(t, S(t))

)
= e−rt

(
−rcdt+ ctdt+ cxdS(t) +

1

2
cxxdS(t)dS(t)

)
= e−rt

(
−rc+ ct + rS(t)cx +

1

2
σ2S2(t)cxx

)
dt+ σS(t)cx(t, S(t))dW̃ (t)

= σe−rtS(t)cx(t, S(t))dW̃ (t)

(1.3.66)
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because c(t, x) satisfies the Black-Scholes partial differential equation

rc(t, x) = ct(t, x) + rxcx(t, x) +
1

2
σ2x2cxx(t, x), 0 ≤ t < T, x ≥ 0

Equating (1.3.65) and (1.3.66), we see that to replicate the call, the agent should take X(0) = c(0, S(0)) and

Φ(t) = e−r(T−t)cx(t, S(t))

From (1.3.64), we see that the futures price at time t is the asset price S(t) scaled up by er(T−t). Therefore,
the hedge ratio Φ(t) for trading in futures is the hedge ratio ∆(t) = cx(t, S(t)) for trading in the underlying
asset scaled down by e−r(T−t).

End of Lecture 9

1.4 Financing portfolios

1.4.1 Self-financing portfolio

For simplicity, consider a portfolio with two (risky) assets: S1, S2, so that we have the portfolio value X(t)
such that

X(t) = ∆(t)S1(t) + Γ(t)S2(t)

In differential, we (wish to) have
dX(t) = ∆(t)dS1(t) + Γ(t)dS2(t) (1.4.1)

Note that this is not true in general but a condition called self-financing. This is because, by Itô’s product
rule, we have

dX(t) = ∆(t)dS1(t) + S1(t)d∆(t) + dS1(t)d∆(t) + Γ(t)dS2(t) + S2(t)dΓ(t) + dS2(t)dΓ(t)

So to satisfy (1.4.1), we need

S1(t)d∆(t) + dS1(t)d∆(t) + S2(t)dΓ(t) + dS2(t)dΓ(t) = 0 (1.4.2)

In discrete time, (1.4.2) implies:

S1 (tj−1) [∆(tj)−∆(tj−1)] + [∆(tj)−∆(tj−1)] [S1(tj)− S1(tj−1)]

+ S2 (tj−1) [Γ(tj)− Γ(tj−1)] + [S2(tj)− S2(tj−1)] [Γ(tj)− Γ(tj−1)]

= S1(tj) [∆(tj)−∆(tj−1)] + S2(tj) [Γ(tj)− Γ(tj−1)] = 0.

Example 1.4.1 (Black’s formula). Consider the model

X(t) = C(t) = S(t)N(d+(t,For(t, T )))−KB(t, T )N(d−(t,For(t, T )))

To equate
dX(t)

?
= ∆1(t)dS(t) + Γ(t)dB(t, T ),

We suggest that
∆1(t) = N(d+(t,For(t, T ))), Γ(t) = −KN(d−(t,For(t, T )))

achieves the self-financing condition.

Example 1.4.2 (Using money market to finance trading). Let S(t) be a risky asset price process and let

M(t) = ert, r > 0,
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be the value at time t of one unit invested in the risk-free money-market. Then

dM(t) = rM(t) dt.

A trading strategy is given by progressively measurable processes ∆(t) and Γ(t), denoting the number of shares
of S and units of M . The portfolio value is

X(t) = ∆(t)S(t) + Γ(t)M(t).

We require the strategy to be self-financing, i.e.

dX(t) = ∆(t) dS(t) + Γ(t) dM(t).

Applying Itô’s product rule to X(t) = ∆S + ΓM yields

dX(t) = ∆ dS + S d∆+ d⟨∆, S⟩+ Γ dM +M dΓ + d⟨Γ,M⟩.

Comparison with the self-financing relation gives the financing condition

S(t) d∆(t) +M(t) dΓ(t) + d⟨∆, S⟩t + d⟨Γ,M⟩t = 0,

which in continuous-diffusion models reduces to

S(t) d∆(t) +M(t) dΓ(t) = 0.

Since X = ∆S + ΓM , one solves

Γ(t) =
X(t)−∆(t)S(t)

M(t)
,

so that Γ(t)M(t) is precisely the cash position.

To replicate a European call with payoff X(T ) = (S(T ) − K)+, set X(t) = c (t, S(t)). Under the
self-financing condition and risk-neutral valuation one obtains the Black-Scholes PDE. The resulting delta-
hedging strategy is

∆(t) =
∂c

∂S
(t, S(t)) , Γ(t) =

c (t, S(t))−∆(t)S(t)

M(t)
.

Trading-floor derivation of the Black-Scholes PDE

This section records the well-known “trading-floor” (heuristic) route to the Black-Scholes equation. The
argument is illustrative—it shows why a delta-hedged portfolio is almost risk-free—but it is not itself rigorous;
the two key shortcuts we highlight below happen to cancel.

For the set up, at time t we hold one European call worth c(t, S(t)) and sell ∆(t, S(t)) shares of the underlying
S(t). The portfolio

Y (t) = c(t, S(t))−∆(t, S(t))S(t), ∆(t, S(t)) :=
∂c

∂S
(t, S(t)).

Assume the stock follows

dS(t) = µS(t) dt+ σS(t) dW (t), (dS)2 = σ2S2 dt.

(Flawed Itô calculation) Applying Itô to c(t, S(t)) and ignoring the stochasticity of ∆(t, S(t)) one obtains

dY (t) =

(
∂c

∂t
+

1

2
σ2S2 ∂

2c

∂S2

)
dt (1.4.3)

The dS-terms appear to cancel.
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(Flawed risk-free argument) Because ∆(t, S(t)) is chosen so that the portfolio is locally insensitive to dS,
traders treat Y as instantaneously riskless; hence

dY (t) = rY (t) dt. (1.4.4)

Setting the right-hand sides of Equations (1.4.3) and (1.4.4) equal and rearranging yields

∂c

∂t
+ rS

∂c

∂S
+

1

2
σ2S2 ∂

2c

∂S2
− rc = 0,

the Black-Scholes PDE.

So why does this seem to be correct? Correction 1: define ∆ := ∂c
∂S and apply Itô to the whole portfolio:

dY =

(
∂c

∂t
+

1

2
σ2S2 ∂

2c

∂S2

)
dt− S d∆− dS d∆. (1.4.5)

Meanwhile, consider Figure 1.4.1. The solid curve is the call-price surface x 7→ c(t, x), a convex function of
the spot. The dashed line is the tangent at the current spot x = S(t); its slope ∆ = ∂c/∂x represents the
delta of the option. The current state is at (S(t), c(t, S(t))). The vertical gap between the curve and the
tangent, Y = c − ∆S, equals the value of the delta-hedged portfolio. Although this gap is locally flat at
x = S(t) (hence the position is instantaneously insensitive to small moves in S), the entire curve shifts over
time, so re-hedging is required; the position is not truly risk-free.

x

c(t, x)

(S(t), c(t, S(t))

Figure 1.4.1: Call price c(t, x) and its tangent at the current spot x = S(t).

Correction 2: define Γ such that

Y (t) = c(t, S(t))− ∂c

∂S
(t, S(t))S(t) =: Γ(t) ert.

Taking the differential correctly, one gets

dY = Γ(t)rert︸ ︷︷ ︸
rY (t)

dt+ ertdΓ(t) + dertdΓ(t); (1.4.6)

The terms omitted in (1.4.3) and (1.4.4) are exactly −S d∆ − dS d∆ and ertdΓ + dertdΓ, respectively, and
note that (1.4.5) and (1.4.6) reconcile and the two errors cancel, because

ertdΓ + dertdΓ = −S d∆− dS d∆

is exactly the self-financing condition (1.4.2). A fully rigorous derivation starts from (1.4.5)–(1.4.6) rather
than (1.4.3)–(1.4.4).

1.4.2 Funding and collateral considerations
Reference: [Pit10], [BBPL12]. Below is a direct excerpt from [Pit10].

Classic derivative-pricing textbooks assume a trader can borrow and lend at one universal “risk-free” rate.
Since 2008, that fiction has broken down: banks face a menu of funding rates—secured vs. unsecured,
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bank-specific credit spreads, repo, collateral rates, etc. For a derivatives desk, funding is now the dominant
practical cost because every hedge or replication step requires borrowing or lending cash or securities at one
of those rates.

We start with the risk-free curve for lending, a curve that corresponds to the safest available collateral (cash).
We denote the corresponding short rate at time t by rC(t); C here stands for ‘CSA’, as we assume this is
the agreed overnight rate paid on collateral among dealers under CSA. It is convenient to parameterise term
curves in terms of discount factors; we denote corresponding riskfree discount factors by PC(t, T ), 0 ≤ t ≤
T <∞. Standard Heath-Jarrow-Morton theory applies, and we specify the following dynamics for the yield
curve:

dPC(t, T )/PC(t, T ) = rC(t)dt− σC(t, T )
⊤dWC(t) (1.4.7)

where Wc(t) is a d-dimensional Brownian motion under the riskneutral measure P and σC is a vector-valued
(dimension d) stochastic process.

In what follows, we shall consider derivatives contracts on a particular asset, whose price process we denote
by S(t), t ≥ 0. We denote by rR(t) the short rate on funding secured by this asset (here ’ R ’ stands for
’repo’). The difference rC(t)− rR(t) is sometimes called the stock lending fee. Finally, let us define the short
rate for unsecured funding by rF (t), t ≥ 0. As a rule, we would expect that rC(t) ≤ rR(t) ≤ rF (t).

The existence of non-zero spreads between short rates based on different collateral can be recast in the
language of credit risk, by introducing joint defaults between the bank and various assets used as collateral
for funding. In particular, the funding spread sF (t) := rF (t)− rC(t) could be thought of as the (stochastic)
intensity of default of the bank. We do not pursue this formalism here, postulating the dynamics of funding
curves directly instead. Likewise, we ignore the possibility of a counterparty default, an extension that could
be developed rather easily.

Black-Scholes with collateral

Let us look at how the standard Black-Scholes pricing formula changes in the presence of a CSA. Let S(t)
be an asset that follows, in the real world, the following dynamics:

dS(t)/S(t) = µS(t)dt+ σS(t)dW (t)

Let V (t, S) be a derivatives security on the asset; by Itô’s lemma it follows that:

dV (t) = (LV (t))dt+∆(t)dS(t)

where L is the standard pricing operator:

L =
∂

∂t
+
σS(t)

2S2

2

∂2

∂S2

and ∆ is the option’s delta:

∆(t) =
∂V (t)

∂S

Let C(t) be the collateral (cash in the collateral account) held at time t against the derivative. For flexibility,
we allow this amount to be different12 from V (t).

To replicate the derivative, at time t we hold ∆(t) units of stock and γ(t) cash. Then the value of the
replication portfolio, which we denote by Π(t), is equal to:

V (t) = Π(t) = ∆(t)S(t) + γ(t) (1.4.8)

The cash amount γ(t) is split among a number of accounts:
12In what follows we use (1.4.9), (1.4.11) with either C = 0 or C = V. However, these formulas, in their full generality, could

be used to obtain, for example, the value of a derivative covered by one-way (asymmetric) CSA agreement, or a more general
case where the collateral amount tracks the value only approximately.
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• Amount C(t) is in collateral.
• Amount V (t)− C(t) needs to be borrowed/lent unsecured from the treasury desk.
• Amount ∆(t)S(t) is borrowed to finance the purchase of ∆(t) stocks. It is secured by stock purchased.
• Stock is paying dividends at rate rD.

The growth of all cash accounts g(t)dt (collateral, unsecured, stock-secured, dividends) is given by:

g(t)dt = [rC(t)C(t) + rF (t)(V (t)− C(t))− rR(t)∆(t)S(t) + rD(t)∆(t)S(t)] dt

On the other hand, from (1.4.8), by the self-financing condition:

g(t)dt = dV (t)−∆(t)dS(t)

which is, by Itô’s lemma:

dV (t)−∆(t)dS(t) = (LV (t))dt =

(
∂

∂t
+
σS(t)

2

2
S2 ∂2

∂S2

)
V (t)dt

Thus we have:(
∂

∂t
+
σS(t)

2

2
S2 ∂2

∂S2

)
V = rC(t)C(t) + rF (t)(V (t)− C(t)) + (rD(t)− rR(t))

∂V

∂S
S

which, after some rearrangement, yields:

∂V

∂t
+ (rR(t)− rD(t))

∂V

∂S
S +

σS(t)
2

2
S2 ∂

2V

∂S2
= rF (t)V (t)− (rF (t)− rC(t))C(t)

The solution, obtained by essentially following the steps that lead to the Feynman-Kac formula, is given by:

V (t) = Et

(
e−

∫ T
t

rF (u)duV (T ) +

∫ T

t

e−
∫ u
t

rF (v)dv (rF (u)− rC(u))C(u)du

)
(1.4.9)

in the measure in which the stock grows at rate rR(t)− rD(t), that is:

dS(t)/S(t) = (rR(t)− rD(t)) dt+ σS(t)dWS(t) (1.4.10)

By rearranging terms in (1.4.9), we obtain another useful formula for the value of the derivative:

V (t) = Et

(
e−

∫ T
t

rc(u)duV (T )
)
− Et

(∫ T

t

e−
∫ u
t

rc(v)dv (rF (u)− rC(u)) (V (u)− C(u))du

)
(1.4.11)

We note that:
Et(dV (t)) = (rF (t)V (t)− (rF (t)− rC(t))C(t)) dt

= (rF (t)V (t)− sF (t)C(t)) dt
(1.4.12)

So, the rate of growth in the derivatives security is the funding spread rF (t) applied to its value minus the
credit spread sF (t) applied to the collateral.

(Full collateral) In particular, if the collateral is equal to the value V then:

Et(dV (t)) = rC(t)V (t)dt, V (t) = Et

(
e−

∫ T
t

rc(u)duV (T )
)

(1.4.13)

and the derivative grows at the risk-free rate. The final value is the only payment that appears in the
discounted expression as the other payments net out given the assumption of full collateralisation. This is
consistent with the drift in (1.4.7) as PC(t, T ) corresponds to deposits secured by cash collateral. This case
could be handled by using a measure that corresponds to the risk-free bond

PC(t, T ) = Et

(
e−

∫ T
t

Tc(u)du
)
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as a numéraire.

(Zero collateral) On the other hand, if the collateral is zero, then:

Et(dV (t)) = rF (t)V (t)dt (1.4.14)

and the rate of growth is equal to the bank’s unsecured funding rate or, using credit risk language, adjusted
for the possibility of the bank default. This case could be handled by using a measure that corresponds to
the risky bond

PF (t, T ) = Et

(
e−

∫ TF
t (u)du

)
as a numéraire.

End of Lecture 10

1.5 Foreign and domestic risk-neutral measures
Reference: [Shr04, §9.3].

FX is always confusing but never complicated.

We consider a market with two currencies, A (domestic) and B (foreign). For concreteness, one might think
of A as US Dollars (USD) and B as Euros (EUR). The exchange rate process XB|A(t) denotes the price of
one unit of currency B expressed in units of currency A at time t. For example, if XEUR|USD(t) = 1.14, it
costs 1.14 USD to buy 1 EUR at time t.

This notation behaves algebraically like fractions:

• XB|A(t) ·XC|B(t) = XC|A(t) (Triangular relationship)
• XB|A(t)

XC|A(t)
= XB|C(t)

• XA|B(t) = 1
XB|A(t)

(Inversion)

We model the financial market under the physical measure P. Let (Ω,F ,P) be a probability space equipped
with a filtration {F(t)}t≥0 generated by two independent standard Brownian motions W1(t) and W2(t).

The market consists of:

1. A domestic money market account MA(t) growing at a constant risk-free rate rA:

dMA(t) = rAM
A(t)dt,

with MA(0) = 1, so MA(t) = erAt. The corresponding discount factor is DA(t) = e−rAt.
2. A foreign money market account MB(t) growing at a constant risk-free rate rB :

dMB(t) = rBM
B(t)dt,

with MB(0) = 1, so MB(t) = erBt. The corresponding discount factor is DB(t) = e−rBt.
3. A risky asset S(t), denominated in the domestic currency A, following a geometric Brownian motion:

dS(t) = αS(t)dt+ σS(t)dW1(t), (1.5.1)

where α is the constant expected rate of return and σ > 0 is the constant volatility.
4. The exchange rate XB|A(t), also following a geometric Brownian motion, potentially correlated with
S(t):

dXB|A(t) = γXB|A(t)dt+ σ2X
B|A(t)

(
ρdW1(t) +

√
1− ρ2dW2(t)

)
, (1.5.2)

where γ is the constant expected rate of change, σ2 > 0 is the constant volatility of the exchange
rate, and ρ ∈ (−1, 1) is the constant correlation coefficient between the Brownian drivers of S(t) and
XB|A(t).
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It is sometimes convenient to represent the volatilities as vectors corresponding to the coefficients of dW1

and dW2.

• Volatility vector for S(t): σ⃗S = (σ, 0). The magnitude |σ⃗S | = σ is the standard volatility.
• Volatility vector for XB|A(t): σ⃗X = (ρσ2,

√
1− ρ2σ2). The magnitude

|σ⃗X | =
√

(ρσ2)2 + (
√
1− ρ2σ2)2 =

√
ρ2σ2

2 + (1− ρ2)σ2
2 = σ2

is the standard volatility.

Volatility vectors have the useful property that for a ratio of two processes Z1/Z2, the volatility vector of
the ratio is the difference of the individual volatility vectors: σ⃗Z1/Z2

= σ⃗Z1 − σ⃗Z2 .

1.5.1 Domestic risk-neutral measure
We seek a risk-neutral measure PA equivalent to P, under which asset prices denominated in the domestic
currency A, when discounted by the domestic discount factor DA(t), become martingales. This implies
that under PA, the expected rate of return for any traded asset denominated in currency A must equal the
domestic risk-free rate rA.

Let WA
1 (t) and WA

2 (t) be two independent standard Brownian motions under PA. By Girsanov’s theorem,
there exist market price of risk processes Θ1(t) and Θ2(t) such that:

dWA
1 (t) = dW1(t) + Θ1(t)dt

dWA
2 (t) = dW2(t) + Θ2(t)dt

In our constant coefficient setting, Θ1 and Θ2 will be constants.

Applying the risk-neutral requirement to asset S(t): The dynamics under P are dS(t) = αS(t)dt +
σS(t)dW1(t). Substituting dW1(t) = dWA

1 (t)−Θ1dt:

dS(t) = αS(t)dt+ σS(t)(dWA
1 (t)−Θ1dt) = (α− σΘ1)S(t)dt+ σS(t)dWA

1 (t).

For the drift to be rAS(t)dt under PA, we must have:

α− σΘ1 = rA =⇒ α = rA + σΘ1. (1.5.3)

This is the first market price of risk (MPR) equation. It determines Θ1 = (α− rA)/σ.

Now consider the investment strategy from the perspective of a domestic (A) investor: investing in the
foreign (B) money market account MB(t). The value of this investment in the domestic currency A is
V (t) = MB(t)XB|A(t). This represents a traded asset denominated in currency A. We need to find its
dynamics under P. Using Itô’s product rule for V (t) =MB(t)XB|A(t):

dV (t) =MB(t)dXB|A(t) +XB|A(t)dMB(t) + dMB(t)dXB|A(t)

=MB(t)
[
γXB|A(t)dt+ σ2X

B|A(t)(ρdW1 +
√
1− ρ2dW2)

]
+XB|A(t)[rBM

B(t)dt] + 0

(since dMBdXB|A involves dt · dt or dt · dW )

= (rB + γ)MB(t)XB|A(t)dt+ σ2M
B(t)XB|A(t)(ρdW1(t) +

√
1− ρ2dW2(t))

= (rB + γ)V (t)dt+ σ2V (t)(ρdW1(t) +
√
1− ρ2dW2(t)).

Under the risk-neutral measure PA, this asset must also have an expected return of rA. Substituting dW1 =
dWA

1 −Θ1dt and dW2 = dWA
2 −Θ2dt:

dV (t) = (rB + γ)V (t)dt+ σ2V (t)(ρ(dWA
1 −Θ1dt) +

√
1− ρ2(dWA

2 −Θ2dt))

=
[
rB + γ − σ2ρΘ1 − σ2

√
1− ρ2Θ2

]
V (t)dt+ σ2V (t)(ρdWA

1 (t) +
√
1− ρ2dWA

2 (t)).
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For the drift to be rAV (t)dt under PA, we must have:

rB + γ − σ2ρΘ1 − σ2
√

1− ρ2Θ2 = rA. (1.5.4)

This is the second MPR equation.

Given α, σ, rA, γ, σ2, ρ, rB , equations (1.5.3) and (1.5.4) form a system of two linear equations for the two
unknowns Θ1 and Θ2. Since σ > 0 and σ2

√
1− ρ2 > 0 (as |ρ| < 1), this system has a unique solution for

Θ1 and Θ2. This implies the market is complete with respect to the sources of randomness W1,W2 and the
traded assets S(t),MB(t)XB|A(t), and there exists a unique domestic risk-neutral measure PA.

The Radon-Nikodym derivative process defining the change of measure from P to PA on Ft is given by the
stochastic exponential ZA(t) = dPA

dP |Ft :

ZA(t) = E
(
−
∫ t

0

Θ1dW1(u)−
∫ t

0

Θ2dW2(u)

)

ZA(t) = exp

(
−Θ1W1(t)−Θ2W2(t)−

1

2
(Θ2

1 +Θ2
2)t

)
.

Under the domestic risk-neutral measure PA, the dynamics of the primary assets become:

dS(t) = rAS(t)dt+ σS(t)dWA
1 (t) (1.5.5)

d(MB(t)XB|A(t)) = rAM
B(t)XB|A(t)dt+ σ2M

B(t)XB|A(t)(ρdWA
1 (t) +

√
1− ρ2dWA

2 (t)) (1.5.6)

We can also derive the dynamics of the exchange rate XB|A(t) itself under PA. Note that XB|A(t) =
DB(t)V (t) = e−rBtV (t). Using the product rule on this relationship with the dynamics (1.5.6):

dXB|A(t) = d(e−rBtV (t)) (1.5.7)

= e−rBtdV (t) + V (t)d(e−rBt) + d(e−rBt)dV (t) (1.5.8)

= e−rBt
[
rAV (t)dt+ σ2V (t)(ρdWA

1 +
√

1− ρ2dWA
2 )
]
+ V (t)[−rBe−rBtdt] + 0 (1.5.9)

= (rA − rB)e
−rBtV (t)dt+ σ2e

−rBtV (t)(ρdWA
1 (t) +

√
1− ρ2dWA

2 (t)) (1.5.10)

= (rA − rB)X
B|A(t)dt+ σ2X

B|A(t)(ρdWA
1 (t) +

√
1− ρ2dWA

2 (t)). (1.5.11)

This is a crucial result: under the domestic risk-neutral measure PA, the expected rate of change of the
exchange rate XB|A(t) (price of foreign currency in domestic units) is the difference between the domestic
and foreign risk-free interest rates, rA − rB . This relationship, often called the interest rate parity condition
in a risk-neutral world, holds generally beyond this specific constant-coefficient model.

1.5.2 Foreign risk-neutral measure
The dynamics of the exchange rate XB|A(t) under the domestic risk-neutral measure PA were found to be:

dXB|A(t) = (rA − rB)X
B|A(t)dt+ σ2X

B|A(t)(ρdWA
1 (t) +

√
1− ρ2dWA

2 (t)).

The drift rA−rB might seem counterintuitive initially, as XB|A(t) is not a traded asset price denominated in
currency A whose discounted value must be a PA-martingale. The explanation lies in viewing the investment
in the foreign money market account MB(t) from the domestic perspective. The value in currency A is
V (t) = MB(t)XB|A(t). An investor holding this position earns the domestic risk-free rate rA on the value
V (t) (as it’s a traded asset under PA) but also implicitly receives the foreign interest rB on the underlying
quantity MB(t) held in the foreign currency. This foreign interest acts like a continuous dividend stream
paid at rate rB on the asset V (t). For the discounted value DA(t)V (t) to be a martingale under PA, the
drift of V (t) must be rAV (t)dt. However, the drift of the underlying exchange rate XB|A(t) must adjust to
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account for the “dividend” rB . If XB|A(t) had drift rAXB|A(t)dt, then V (t) would have drift (rA+rB)V (t)dt.
To achieve the required drift of rAV (t)dt for V (t), the drift of XB|A(t) must be (rA − rB)X

B|A(t)dt. This
ensures consistency:

dV (t) = d(MBXB|A) =MBdXB|A +XB|AdMB

=MB [(rA − rB)X
B|Adt+ . . . dWA] +XB|A[rBM

Bdt]

= (rA − rB + rB)M
BXB|Adt+ . . . dWA = rAV (t)dt+ . . . dWA.

Let’s consider pricing a European call option on the exchange rate with strike K and maturity T , paying
(XB|A(T )−K)+ in currency A. The price at time t under PA is:

C(t, x) = EPA
[
DA(T )/DA(t)(XB|A(T )−K)+

∣∣∣XB|A(t) = x
]

= EPA
[
e−rA(T−t)(XB|A(T )−K)+

∣∣∣XB|A(t) = x
]
.

This expectation involves the process XB|A(t) which has drift rA−rB under PA. This structure is analogous
to pricing an option on a stock paying a continuous dividend yield equal to rB . We can use a change of
numeraire technique or directly adapt the Black-Scholes formula. Let’s adjust the discounting to match the
asset’s growth rate temporarily:

C(t, x) = EPA
[
e−(rA−rB)(T−t)e−rB(T−t)(XB|A(T )−K)+

∣∣∣XB|A(t) = x
]

= e−rB(T−t)EPA
[
e−(rA−rB)(T−t)(XB|A(T )−K)+

∣∣∣XB|A(t) = x
]
.

The remaining expectation is now in the standard Black-Scholes form for an asset with drift rA − rB and
volatility σ2, discounted at rate rA − rB . The standard Black-Scholes formula applies with the interest rate
replaced by rA − rB and volatility σ2:

EPA
[
e−(rA−rB)(T−t)(XB|A(T )−K)+

∣∣∣XB|A(t) = x
]
= xN(d+)−Ke−(rA−rB)(T−t)N(d−),

where N(·) is the standard normal CDF and

d± =
1

σ2
√
T − t

[
log
( x
K

)
+

(
(rA − rB)±

1

2
σ2
2

)
(T − t)

]
.

Substituting back, we obtain the Garman-Kohlhagen formula (1983):

C(t, x) = xe−rB(T−t)N(d+)−Ke−rA(T−t)N(d−). (1.5.12)

This formula is the standard for pricing European options on foreign exchange rates.

Now, consider the perspective of an investor based in currency B (e.g., Frankfurt). They would naturally
use a risk-neutral measure PB under which asset prices denominated in currency B, when discounted by the
foreign discount factor DB(t) = e−rBt, become martingales. Under PB , the expected rate of return for any
traded asset denominated in currency B must be rB .

We can summarize the assets and their values in different units in the following table. Let Q(t) = XB|A(t)
be the price of 1 unit of B in A. Then 1/Q(t) = XA|B(t) is the price of 1 unit of A in B.

Denominated in ↓ / Asset → Domestic money market (MA) Stock (S) Foreign money market (MB)
Domestic currency (A) MA(t) S(t) MB(t)Q(t)
Units of MA (Domestic numeraire) 1 DA(t)S(t) DA(t)MB(t)Q(t)
Foreign currency (B) MA(t)/Q(t) S(t)/Q(t) MB(t)
Units of MB (Foreign numeraire) MA(t)/(Q(t)MB(t)) S(t)/(Q(t)MB(t)) 1

= DB(t)MA(t)/Q(t) = DB(t)S(t)/Q(t)
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The processes in the second row, denominated in units of MA, are martingales under the domestic risk-
neutral measure PA. The processes in the fourth row, denominated in units of MB , must be martingales
under the foreign risk-neutral measure PB .

We can find the relationship between PA and PB using the change of numeraire technique. The Radon-
Nikodym derivative process relating the two measures is given by the ratio of the *target* numeraire (for
PB) to the *source* numeraire (for PA), both normalized by their initial values and expressed in a common
currency (say, A). Numeraire for PA: NA(t) = MA(t). Value in currency A is NA

A (t) = MA(t). Numeraire
for PB : NB(t) = MB(t). Value in currency A is NA

B (t) = MB(t)Q(t). The Radon-Nikodym derivative
process ZA→B(t) = dPB

dPA |Ft
is given by the ratio of the normalized target numeraire to the normalized source

numeraire:

ZA→B(t) =
NA

B (t)/NA
B (0)

NA
A (t)/NA

A (0)
=

(MB(t)Q(t))/(MB(0)Q(0))

MA(t)/MA(0)

Assuming the standard initializations MA(0) = 1 and MB(0) = 1, this simplifies to:

ZA→B(t) =
MB(t)Q(t)/Q(0)

MA(t)/1
=
MB(t)Q(t)

MA(t)Q(0)
.

Alternatively, using the martingale approach from the lecture: the process used to change from PA to PB

should correspond to the numeraire portfolio for PB when expressed as a PA-martingale. The third entry
in the second row, DA(t)MB(t)Q(t), represents the value of the foreign money market account (numeraire
for PB) expressed in units of the domestic money market account (numeraire for PA). This process is a
PA-martingale. Normalizing it to start at 1 gives the Radon-Nikodym derivative process:

ZA→B(t) =
DA(t)MB(t)Q(t)

DA(0)MB(0)Q(0)
=
DA(t)MB(t)Q(t)

Q(0)
. (1.5.13)

The volatility vector of ZA→B(t) under PA is the same as the volatility vector of Q(t) = XB|A(t) under PA,
as DA(t) and MB(t) are deterministic. Volatility vectors are invariant under equivalent measure changes,
so the volatility vector is σ⃗X = (ρσ2,

√
1− ρ2σ2). The dynamics of ZA→B(t) under PA are dZA→B(t) =

ZA→B(t)(σ⃗X · dW⃗A(t)). By Girsanov’s theorem, the Brownian motions under PB , denoted WB
1 ,W

B
2 , are

related to those under PA by dWB
i = dWA

i − (σ⃗X)idt.

dWB
1 (t) = dWA

1 (t)− ρσ2dt (1.5.14)

dWB
2 (t) = dWA

2 (t)−
√

1− ρ2σ2dt (1.5.15)

Using these relationships, one can derive the dynamics of assets S(t) and Q(t) under the foreign risk-neutral
measure PB . For example, under PB , the drift of S(t)/Q(t) (stock price in currency B) discounted by DB(t)
should be zero.

We now examine the market from the perspective of an investor based in currency B. Their natural pricing
measure is the foreign risk-neutral measure PB . We derived the relationship between the Brownian motions
under PA and PB as:

dWA
1 (t) = dWB

1 (t) + ρσ2dt

dWA
2 (t) = dWB

2 (t) +
√

1− ρ2σ2dt

(Note: these are inverted from (1.5.14), (1.5.15) to express PA-BMs in terms of PB-BMs).

Let’s verify the dynamics of the inverse exchange rate, XA|B(t) = 1/XB|A(t), which represents the price of
1 unit of domestic currency A in terms of foreign currency B. We expect its drift under PB to be rB − rA.
We start with the dynamics of XB|A(t) under PA (1.5.11):

dXB|A(t) = (rA − rB)X
B|A(t)dt+ σ2X

B|A(t)(ρdWA
1 (t) +

√
1− ρ2dWA

2 (t)).
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Apply Itô’s lemma to f(x) = 1/x, where x = XB|A(t). We have f ′(x) = −1/x2 and f ′′(x) = 2/x3.
dXA|B(t)

= d(f(XB|A(t))) = f ′(XB|A)dXB|A +
1

2
f ′′(XB|A)(dXB|A)2

= −
1

(XB|A)2

[
(rA − rB)XB|Adt+ σ2X

B|A(ρdWA
1 +

√
1− ρ2dWA

2 )
]
+

1

2

2

(XB|A)3

[
σ2X

B|A(ρdWA
1 +

√
1− ρ2dWA

2 )
]2

= −
1

XB|A (rA − rB)dt−
σ2

XB|A (ρdWA
1 +

√
1− ρ2dWA

2 ) +
1

(XB|A)3
(XB|A)2σ2

2(ρdW
A
1 +

√
1− ρ2dWA

2 )2

=(rB − rA)XA|Bdt− σ2X
A|B(ρdWA

1 +
√

1− ρ2dWA
2 ) +XA|Bσ2

2(ρ
2dt+ (1− ρ2)dt+ 2ρ

√
1− ρ2dWA

1 dWA
2 )

= (rB − rA + σ2
2)X

A|Bdt− σ2X
A|B(ρdWA

1 (t) +
√

1− ρ2dWA
2 (t)).

This gives the dynamics of XA|B(t) under PA. Now, substitute dWA
1 = dWB

1 + ρσ2dt and dWA
2 = dWB

2 +√
1− ρ2σ2dt:

dXA|B(t) = (rB − rA + σ2
2)X

A|Bdt− σ2X
A|B

[
ρ(dWB

1 + ρσ2dt) +
√

1− ρ2(dWB
2 +

√
1− ρ2σ2dt)

]
= (rB − rA + σ2

2)X
A|Bdt− σ2X

A|B
[
ρdWB

1 +
√
1− ρ2dWB

2

]
− σ2X

A|B [ρ2σ2dt+ (1− ρ2)σ2dt
]

= (rB − rA + σ2
2)X

A|Bdt− σ2X
A|B(ρdWB

1 +
√

1− ρ2dWB
2 )− σ2

2X
A|Bdt

= (rB − rA)X
A|Bdt− σ2X

A|B(ρdWB
1 (t) +

√
1− ρ2dWB

2 (t)).

Thus, under the foreign risk-neutral measure PB , the dynamics are:

dXA|B(t) = (rB − rA)X
A|B(t)dt− σ2X

A|B(t)(ρdWB
1 (t) +

√
1− ρ2dWB

2 (t)). (1.5.16)

This confirms that the expected rate of change for XA|B(t) (price of domestic currency in foreign units) is
rB − rA under PB . Note that the volatility structure −σ2(ρ,

√
1− ρ2) corresponds to −σ⃗X , reflecting the

inverse relationship XA|B = 1/XB|A.

Two examples under PB :

Example 1.5.1 (Dynamics of Domestic Asset in Foreign Currency). Let SB(t) = S(t)/Q(t) = S(t)XA|B(t)
be the price of the domestic stock S expressed in the foreign currency B. Using the dynamics under PB for
S(t) (derived by changing measure in (1.5.5)) and XA|B(t) (1.5.16), and applying Itô’s product rule, one can
show that dSB(t) = rBS

B(t)dt+ . . . dWB, confirming it grows at the foreign risk-free rate rB under PB. The
volatility vector calculation is simpler: σ⃗SB = σ⃗S− σ⃗Q = (σ, 0)− (ρσ2,

√
1− ρ2σ2) = (σ−ρσ2,−

√
1− ρ2σ2).

Example 1.5.2 (Put-call duality). Consider the price C(0) of the European call option paying (XB|A(T )−
K)+ in currency A at time T . We found C(0) = EPA

[DA(T )(XB|A(T ) − K)+]. Let’s manipulate this
expression using the change of measure process ZA→B(T ) = DA(T )MB(T )Q(T )

Q(0) . Recall Q(t) = XB|A(t).

C(0) = EPA

[
DA(T )XB|A(T )

(
1− K

XB|A(T )

)+
]
= EPA

[
DA(T )XB|A(T )(1−KXA|B(T ))+

]
= EPA

[
DA(T )MB(T )XB|A(T )

Q(0)
· Q(0)

MB(T )
(1−KXA|B(T ))+

]
= EPA

[
ZA→B(T ) ·Q(0)DB(T )(1−KXA|B(T ))+

]
= Q(0)EPB

[
DB(T )(1−KXA|B(T ))+

]
(by Bayes rule)

= Q(0)KEPB

[
DB(T )

(
1

K
−XA|B(T )

)+
]
.

The term EPB

[DB(T )( 1
K −XA|B(T ))+] is the price at time 0, in currency B, of a European put option with

strike 1/K on the exchange rate XA|B(t) (price of A in B). Let PB(0, 1/K) denote this price. Then,

CA(0,K) = Q(0)KPB(0, 1/K).
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This equation relates the price of a call option on XB|A (strike K, in currency A) to the price of a put
option on XA|B (strike 1/K, in currency B). Specifically, the value in currency A of one call option equals
the value in currency A of K put options (since Q(0) converts the price PB from currency B to A). This
relationship is known as FX put-call duality. It holds generally beyond the constant coefficient model,
relying only on the no-arbitrage relationship between the pricing measures. It is distinct from the standard
put-call parity for options on the same underlying asset.

End of Lecture 11

1.6 Course summmary

Derivative security pricing
We work in a market with one or more primary assets Si(t) (e.g. stocks or zero-coupon bonds, paying no
dividends or coupons and with no cost of carry) and a money-market account

M(t) = exp

(∫ t

0

r(u)du

)
,

where r(t) is the (possibly stochastic) short rate and

dM(t) = r(t)M(t)dt.

We assume the model is arbitrage-free: no trading strategy in {Si} alone can generate a sure profit.

To price a derivative security with payoff H at T , we seek a self-financing strategy
(
∆1(t), . . . ,∆n(t),Γ(t)

)
such that its portfolio value

X(t) =

n∑
i=1

∆i(t)Si(t) + Γ(t)M(t)

satisfies X(T ) = H. The self-financing condition is

dX(t) =

n∑
i=1

∆i(t)dSi(t) + Γ(t)dM(t),

and the requirement X(T ) = H uniquely determines {∆i,Γ} whenever H is replicable. By matching the
differentials of the discounted processes

X̃(t) = X(t)/M(t) and c̃(t) = c(t, S(t))/M(t),

one derives (i) an explicit formula for each hedge ratio ∆i(t) and (ii) a partial-differential equation for c(t, S).
In particular, in the classical Black-Scholes setting one recovers

∂c

∂t
+

1

2
σ2S2 ∂

2c

∂S2
+ rS

∂c

∂S
− rc = 0,

with terminal condition c(T, S) = H. Finally, if H is replicable then the absence of arbitrage forces

c(t, S(t)) = X(t) for all 0 ≤ t ≤ T.

Risk-neutral measure
Definition 1.6.1. A probability measure Q on (Ω,F , {Ft}) is called a risk-neutral measure (or martingale
measure) if

Q ∼ P and S̃i(t) =
Si(t)

M(t)

is a Q-martingale for each primary asset i. Equivalently, under Q the drift of every asset equals the short
rate:

dSi(t) = r(t)Si(t)dt+ (diffusion terms).
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Three fundamental consequences:

1. Risk-neutral pricing formula. If a derivative with payoff H at T is replicable, then

c(t, S(t)) =M(t)EQ[M(T )−1H | Ft

]
.

2. First Fundamental Theorem of Asset Pricing. The market is arbitrage-free if and only if at least one
risk-neutral measure Q exists.

3. Incomplete markets. The market is incomplete (some payoffs are not replicable) precisely when there
are infinitely many risk-neutral measures.

Incomplete markets
An incomplete market is one in which some contingent claims cannot be hedged exactly by trading in the
available primary assets. By the Second Fundamental Theorem of Asset Pricing, an arbitrage-free market is
incomplete if and only if there is more than one risk-neutral measure.

Pricing in incomplete markets:

• Replicable claims. Some contracts (e.g. forwards, European calls in simple models) remain replicable
and thus have unique no-arbitrage prices.

• Non-replicable claims. When replication fails, practitioners typically enlarge the market (add traded
instruments) or choose a particular martingale measure (e.g. the minimal martingale measure, the
variance-optimal measure, or an Esscher transform) to compute

c(t) =M(t)EQ∗[
M(T )−1H | Ft

]
.

• No arbitrage. As long as the same Q∗ is used consistently for all derivative prices, arbitrage between
primary assets and derivatives is precluded.

The big theorems
• Martingale Representation Theorem. Every square-integrable martingale can be written as a

stochastic integral with respect to a Brownian motion.
• Multidimensional Lévy Theorem. A continuous local martingale with quadratic covariation matrix
[M i,M j ]t = δijt is a vector of independent Brownian motions.

• Girsanov Theorem. If θ(t) is adapted and satisfies the Novikov condition, then

Z(t) =
dQ
dP

∣∣∣∣
Ft

= exp

(
−
∫ t

0

θ(s)dW (s)− 1

2

∫ t

0

θ(s)2ds

)
is a P-martingale with EP[Z(t)] = 1 and under the measure Q the process

WQ(t) =W (t) +

∫ t

0

θ(s)ds

is a Brownian motion.
• Radon-Nikodym derivative process. The process Z(t) = dQ/dP|Ft

is an exponential martingale
of mean 1.

• Change of expectation. For any integrable X,

EQ[X] = EP[Z(T )X], EQ[X | G] = EP[Z(t)X | G]
EP[Z(t) | G]

(Bayes’ rule).

• Fundamental Theorems of Asset Pricing.
1. First FTAP: No-arbitrage ⇐⇒ existence of a risk-neutral measure.
2. Second FTAP: Market completeness ⇐⇒ uniqueness of the risk-neutral measure.
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Markov processes
Definition 1.6.2. A one-dimensional process X(t) is Markov if for all s ≤ t,

P (X(t) ∈ A | Fs) = P (X(t) ∈ A | X(s)) .

Equivalently, in its SDE dX(t) = µ (t,X(t)) dt+σ (t,X(t)) dW (t) the coefficients depend only on t and X(t).

Definition 1.6.3. A two-dimensional process (X(t), Y (t)) is Markov if its joint SDE

dX(t) = a (t,X(t), Y (t)) dt+ b (t,X(t), Y (t)) dW 1(t),

dY (t) = c (t,X(t), Y (t)) dt+ d (t,X(t), Y (t)) dW 2(t)

has coefficients depending only on (t,X(t), Y (t)) and the driving Brownian motions.

Examples

• Local-volatility model:
dS(t) = rS(t)dt+ σ (t, S(t)) dW̃ (t).

• Stochastic-volatility (Heston):{
dS(t) =

√
V (t)S(t)dW̃1(t),

dV (t) = κ (λ− V (t)) dt+ σ
√
V (t)

(
ρdW̃1(t) +

√
1− ρ2dW̃2(t)

)
.

• Non-Markov example:
dY (t) = S(t)dt,

since the drift depends on S(t) not on Y (t) alone.

Conditional expectations and Markov property
If X is Markov then for any measurable h,

Ẽ [h (X(T )) | Ft] = g (t,X(t)) , g(t, x) = Ẽ [h (X(T )) | X(t) = x] .

The function g satisfies a backward Kolmogorov PDE found by the four-step scheme. In particular, under
constant rate r,

e−rtc(t, x) = Ẽ
[
e−rTh (X(T )) | X(t) = x

]
.

For a two-dimensional Markov pair (S, Y ) one has

e−rtc(t, x, y) = Ẽ

[(
1

T
Y (T )−K

)+
∣∣∣∣∣ S(t) = x, Y (t) = y

]
.

Some common processes
Consider the linear SDE

dX(u) = Y (u)X(u)dW (u).

By Itô’s formula,

d logX(u) = Y (u)dW (u)− 1

2
Y (u)2du,

so that

X(T ) = X(t) exp

[∫ T

t

Y (u)dW (u)− 1

2

∫ T

t

Y (u)2du

]
.

If Y is deterministic, then X is Markov and one can write down its log-normal transition density explicitly.
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The Black-Scholes asset price satisfies

dS(u) = rS(u)du+ σS(u)dW̃ (u),

and similarly

S(T ) = S(t) exp

[
σ
(
W̃ (T )− W̃ (t)

)
+

(
r − 1

2
σ2

)
(T − t)

]
.

The Ho-Lee short-rate model is
dR(u) = α(u)du+ σdW̃ (u),

so that

R(T ) = R(t) +

∫ T

t

α(u)du+ σ
(
W̃ (T )− W̃ (t)

)
.

The Hull-White model satisfies

dR(u) = κ (θ(u)−R(u)) du+ σdW̃ (u).

Multiplying by eκu and integrating gives

R(T ) = e−κT

[
eκtR(t) + κ

∫ T

t

eκuθ(u)du+ σ

∫ T

t

eκudW̃ (u)

]
.

In each case, the Itô integral of a deterministic integrand is Gaussian.

Kolmogorov equations
The transition density of a Markov diffusion X is

p(t, x;T, y) =
∂

∂y
P [X(T ) ≤ y | X(t) = x] .

If
dX(u) = β (u,X(u)) du+ γ (u,X(u)) dW (u),

then p satisfies the backward and forward Kolmogorov equations:

∂

∂t
p+ β(t, x)

∂p

∂x
+

1

2
γ(t, x)2

∂2p

∂x2
= 0,

∂

∂T
p+

∂

∂y
[β(T, y)p]− 1

2

∂2

∂y2
[
γ(T, y)2p

]
= 0.

(Note that the roles of (t, x) and (T, y) swap between the two PDEs.)

Dupire’s formula
Under a local-volatility model

dS(u) = rS(u)du+ σ (u, S(u))S(u)dW̃ (u),

the time-0 price of a European call is

c(0, S(0);T,K) = Ẽ
[
e−rT (S(T )−K)+

]
= e−rT

∫ ∞

K

(y −K)p̃(0, S(0);T, y)dy,

where p̃ is the risk-neutral density of S(T ). Differentiation yields

P̃{S(T ) ≥ K} = −erT cK(0, S(0);T,K), p̃(0, S(0);T,K) = erT cKK(0, S(0);T,K).

Substituting into the forward equation leads to Dupire’s formula for the local volatility:

σ2(T,K) =
2 (cT (0, S(0);T,K) + rKcK(0, S(0);T,K))

K2cKK(0, S(0);T,K)
.
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Arbitrage-free term structure models
One-factor short-rate models

Let the short rate satisfy
dR(u) = β (u,R(u)) du+ γ (u,R(u)) dW̃ (u).

The zero-coupon bond price is

B(t, T ) = Ẽ

[
exp

(
−
∫ T

t

R(u)du

) ∣∣∣∣∣ Ft

]
= g (t, R(t)) .

By the four-step procedure, g satisfies the PDE

rg(t, x) = gt(t, x) + β(t, x)gx(t, x) +
1

2
γ(t, x)2gxx(t, x).

Two-factor short-rate models

Suppose

dX1(u) = β1 (u,X1(u), X2(u)) du+ γ1,1 (u,X1(u), X2(u)) dW̃1(u) + γ1,2 (u,X1(u), X2(u)) dW̃2(u),

dX2(u) = β2 (u,X1(u), X2(u)) du+ γ2,1 (u,X1(u), X2(u)) dW̃1(u) + γ2,2 (u,X1(u), X2(u)) dW̃2(u),

and set R(u) = X1(u) +X2(u). Then B(t, T ) = g (t,X1(t), X2(t)) solves the PDE obtained by replacing r
with x1 + x2 in the one-factor equation and including mixed second derivatives ∂x1x2

g.

Affine yield short-rate models
Guess the bond price in the one-factor case is of the form

g(t, r) = exp (−C(t, T )r −A(t, T )) .

Compute
gt, gr, grr,

substitute into the PDE, and collect the terms multiplying r and those free of r. This yields a system of
ordinary differential equations for C(t, T ) and A(t, T ).

In the two-factor case, guess

g (t, x1, x2) = exp (−C1(t, T )x1 − C2(t, T )x2 −A(t, T )) ,

compute the six partial derivatives gt, gxi
, gxixj

, substitute into the PDE, and separate the coefficients of
x1, x2, and the constant term. One obtains ODEs for C1, C2, and A.

Matching the initial yield curve
The model-implied discount function at t = 0 is

BModel(0, T ) = exp (−C(0, T )R(0)−A(0, T )) , 0 ≤ T ≤ T̄ ,

while the observed market discount function is

BMarket(0, T ) = exp (−TY (0, T )) .

Equate exponents:
C(0, T )R(0) +A(0, T ) = TY (0, T ).

The right-hand side TY (0, T ) is known from market data; the left-hand side depends on the model’s de-
terministic input (e.g. α(u) or θ(u)). Differentiate both sides with respect to T to solve for the unknown
function (e.g. α(T ) or θ(T )). Once α(·) is determined, it is known for all u.
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Forward prices
For 0 ≤ t ≤ T the forward price For(t, T ) for delivery of S(T ) at T is defined by

1

D(t)
Ẽ [D(T ) (S(T )− For(t, T )) | Ft] = 0.

If D(t)S(t) is a P̃-martingale then

For(t, T ) =
S(t)

B(t, T )
=

D(t)S(t)

D(t)B(t, T )
,

and since For(t, T ) is the ratio of two martingales it is itself a martingale under the forward measure PT

defined by
dPT

dP̃

∣∣∣∣
Ft

=
D(t)B(t, T )

B(0, T )
.

Black’s formula
Let S(t) be an asset whose discounted price D(t)S(t) is a P̃-martingale, and let For(t, T ) be its forward price.
Under PT , For(t, T ) is a martingale. If For(t, T ) has constant volatility σ, then

dFor(t, T ) = σFor(t, T )dWT (t).

The time-t price of a call with strike K and payoff S(T ) at T is

1

D(t)
Ẽ
[
D(T )(S(T )−K)+ | Ft

]
= B(t, T )ET

[
(For(T, T )−K)+ | Ft

]
= S(t)N (d+(t))−B(t, T )KN (d−(t)) ,

where
d±(t) =

1

σ
√
T − t

[
ln

For(t, T )

K
± 1

2
σ2(T − t)

]
.

(Instantaneous) forward interest rate
The time-t price of a contract paying R(T ) at T is

S(t) = Ẽ
[
e−

∫ T
t

R(u)duR(T ) | Ft

]
= − ∂

∂T
Ẽ
[
e−

∫ T
t

R(u)du | Ft

]
= − ∂

∂T
B(t, T ).

Define the instantaneous forward rate

f(t, T ) =
S(t)

B(t, T )
= − ∂

∂T
lnB(t, T ).

Writing f(t, u) = −∂u lnB(t, u) and integrating from u = t to u = T gives

B(t, T ) = exp

(
−
∫ T

t

f(t, u)du

)
.

Heath-Jarrow-Morton framework
Assume the instantaneous forward rate satisfies

df(t, T ) = α(t, T )dt+ σ(t, T )dW (t),

and define

σ∗(t, T ) =

∫ T

t

σ(t, u)du.
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A risk-neutral measure exists if and only if

θ(t, T ) =
α(t, T )− σ∗(t, T )σ(t, T )

σ(t, T )

is independent of T . In that case set

θ(t) = θ(t, T ), W̃ (t) =W (t) +

∫ t

0

θ(u)du.

Then under the risk-neutral measure

df(t, T ) = σ∗(t, T )σ(t, T )dt+ σ(t, T )dW̃ (t),

and one shows
d (D(t)B(t, T )) = −σ∗(t, T )D(t)B(t, T )dW̃ (t).

SOFR and forward SOFR

The overnight SOFR fixed at Tj+1 over [Tj , Tj+1] is

S (Tj+1;Tj , Tj+1) =
1

τ

(
e
∫ Tj+1
Tj

R(u)du − 1

)
, τ = Tj+1 − Tj .

The forward SOFR observed at t ≤ Tj+1 is

ForS (t;Tj , Tj+1) =

{
B(t,Tj)

τB(t,Tj+1)
− 1

τ , 0 ≤ t ≤ Tj ,
D(Tj)

τD(t)B(t,Tj+1)
− 1

τ , Tj ≤ t ≤ Tj+1.

Forward SOFR lets one lock in the overnight rate in advance by going long a SOFR-forward and borrowing
at Tj at rate S(Tj+1;Tj , Tj+1).

Futures prices

The futures price for delivery of S(T ) at T is

Fut(t, T ) = Ẽ [S(T ) | Ft] , 0 ≤ t ≤ T,

and satisfies Fut(T, T ) = S(T ). A futures contract has zero initial price; if one trades futures with position
∆(t), self-financing in the money-market, then

dX(t) = ∆(t)dFut(t, T ) +R(t)X(t)dt,

d (D(t)X(t)) = D(t)∆(t)dFut(t, T ).

Forward-futures spread

Assume D(t)S(t) is a P̃-martingale. Then at t = 0,

For(0, T )− Fut(0, T ) =
S(0)

B(0, T )
− Ẽ [S(T )] =

1

B(0, T )

(
Ẽ [D(T )S(T )]−B(0, T )Ẽ [S(T )]

)
=

1

B(0, T )

(
Ẽ [D(T )S(T )]− Ẽ [D(T )] Ẽ [S(T )]

)
=

1

B(0, T )
CovP̃ (D(T ), S(T )) .
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Self-financing trading

Let S1(t) and S2(t) be two asset price processes. A trading strategy holds ∆(t) shares of S1 and Γ(t) shares
of S2 at time t, and no other assets. The portfolio value is

X(t) = ∆(t)S1(t) + Γ(t)S2(t).

The strategy is self-financing if
dX(t) = ∆(t)dS1(t) + Γ(t)dS2(t).

By Itô’s product rule applied to X = ∆S1 + ΓS2, one obtains the financing condition

S1(t)d∆(t) + dS1(t)d∆(t) + S2(t)dΓ(t) + dS2(t)dΓ(t) = 0.

Funding using the money-market account

Introduce the money-market account

M(t) = exp

(∫ t

0

R(u)du

)
, dM(t) = R(t)M(t)dt.

A portfolio holding ∆(t) shares of S and cash Cash(t) = X(t)−∆(t)S(t) has value

X(t) = ∆(t)S(t) + Cash(t) = ∆(t)S(t) + Γ(t)M(t).

Self-financing with funding at the short rate R(t) means

dX(t) = ∆(t)dS(t) +R(t) (X(t)−∆(t)S(t)) dt = ∆(t)dS(t) + Γ(t)dM(t),

since
R(t)Γ(t)M(t)dt = Γ(t)dM(t).

Black’s formula

The time-t price of a European call with strike K and maturity T is

C(t) = N (d+(t))S(t)−KN (d−(t))B(t, T ),

where

d±(t) =
1

σ
√
T − t

[
ln

For(t, T )

K
± 1

2
σ2(T − t)

]
.

A detailed Itô-calculation shows

dC(t) = N (d+(t)) dS(t)−KN (d−(t)) dB(t, T ),

but this derivation is not required.

Trading-floor derivation of Black-Scholes

Form the portfolio that is long one call and short ∆(t) = cx (t, S(t)) shares of stock. Its value is

Y (t) = c (t, S(t))−∆(t)S(t).

First method: apply Itô to c:

dY (t) =

[
ct +

1

2
σ2S2cxx

]
dt+ cxdS −∆dS =

[
ct +

1

2
σ2S2cxx

]
dt.
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Second method: since the portfolio is instantaneously riskless,

dY (t) = rY (t)dt = r (c− Scx) dt.

Equating coefficients of dt gives the Black-Scholes PDE:

ct(t, S) +
1

2
σ2S2cxx(t, S) = rc(t, S)− rScx(t, S).

To summarize, we set up the portfolio that is long one call and short ∆(t) = cX(t, S(t)) shares of stock.
When time passes, there are two effects:

1. Portfolio value changes due to underlying stock movement.
2. Portfolio value changes due to rebalancing.
3. If the trading is self-financing, the second effect is not present.
4. The trading floor derivation portfolio Y (t) is not self financing because it does not account for the

position in cash.

Including the cash position and accounting for rebalancinng results in the same correction to both methods
of computing dY .

Funding considerations
Traders encounter several funding requirements in collateralized transactions:

• (Posting cash collateral) When a trader is required to post cash collateral, interest accrues on the
amount posted.

• (Receiving cash Collateral) Conversely, when a counterparty posts cash collateral with the trader, the
trader pays interest on that collateral.

• (Futures margin accounts) Trading futures mandates margin deposits, which earn interest.
• (Repo financing) A trader may borrow at the repo rate—typically below the federal funds rate—by

pledging assets as collateral.
• (Rate discrepancies) Each of these funding rates (collateral interest, repo rate, margin rate) may differ,

affecting total funding costs.

Remark. In modeling the portfolio value X(t), one must:

1. Include gains or losses from asset price changes, dS(t)× holdings.
2. Track all cash positions, including posted and received collateral, margin, and repo financing.
3. Account for interest income and expense on each cash component.
4. Discount both X(t) and any derivative price c(t, x) by the appropriate discount factors to derive the

governing PDE for c(t, x).
5. Identify a pricing measure under which the discounted derivative price is a martingale, yielding an

expectation representation analogous to Black-Scholes.

Quotients of martingales
Let M(t) and N(t) be positive martingales under a probability measure P. In general, the ratio M(t)/N(t)
is not a martingale under P, but becomes one after a change of measure:

1. Define the Radon-Nikodym derivative process L(t) = N(t)/N(0). Then L has expectation 1.
2. Change to the measure Q via dQ/dP

∣∣
Ft

= L(t). Under Q, M(t)/N(t) is a martingale.
3. The volatility vector of M/N is the difference of the volatility vectors of M and N .
4. The new Brownian motions satisfy

WQ
i (t) =W P

i (t)−
∫ t

0

θi(u)du,

where θ is the volatility vector of N .
5. The volatility scalar of a process is the Euclidean norm of its volatility vector.
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Foreign exchange options
Under the domestic (currency A) measure PA, the spot exchange rate XB|A(t) satisfies

dXB|A(t) = XB|A(t)

[
(RA −RB)dt+

d∑
i=1

νidW
A
i (t)

]
,

where ν = (ν1, . . . , νd) is the volatility vector and ∥ν∥ =
√∑

i ν
2
i . If rates and volatilities are constant, the

price of a European call with strike K and maturity T is given by the Garman-Kohlhagen formula:

C(0) = e−rBT
(
XB|A(0)N(d+)− e−(rA−rB)TKN(d−)

)
,

where

d± =
ln
(
XB|A(0)/K

)
+ (rA − rB ± 1

2∥ν∥
2)T

∥ν∥
√
T

.

Changing currency of a risky asset
Let SA(t) be the price of an asset in currency A and XB|A(t) the exchange rate from A to B. Then the
price in currency B is

SB(t) =
SA(t)

XB|A(t)
.

Using discounted martingale ratios, one shows under the currency-B measure that

dSB(t) = SB(t)

[
RBdt+

d∑
i=1

(σi − νi) dW
B
i (t)

]
,

where

WB
i (t) =WA

i (t)−
∫ t

0

νi(u)du.

End of Lecture 12
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