
Shamir’s secret sharing
Cryptocurrency And Blockchains: Mathematics And Technologies

Sushmanth Kakulla, Rex Liu, and Paul Wawszczyk



Problem

Eleven scientists are working on a secret project. They wish to lock up the documents 
in a cabinet so that the cabinet can be opened if and only if six or more of the scientists 
are present. What is the smallest number of locks needed? What is the smallest 
number of keys to the locks each scientist must carry?

Liu, C.L. Introduction to Combinatorial Mathematics. McGraw- Hill, New York, 1968.



Introduction

First formulated in 1979 by Adi Shamir:

Shamir, A. (1979). How to share a secret. Communications of the ACM, 22(11), 612-613

SSS is used to secure a secret in a distributed form, most often to secure encryption keys. 
The secret is split into multiple shares, which individually do not give any information about 
the secret

To reconstruct a secret secured by SSS, a number of shares is needed, called the threshold. 
No information about the secret can be gained from any number of shares below than the 
threshold (perfect secrecy)

https://en.wikipedia.org/wiki/Encryption_key
https://en.wikipedia.org/wiki/Information-theoretic_security#Security_levels


Tso, Raylin & Liu, Zi-Yuan & Hsiao, Jen-Ho. (2019). Distributed E-Voting and E-Bidding Systems Based on Smart Contract. 
Electronics. 8. 422. 10.3390/electronics8040422.



Properties

Secure: Information-theoretic security

Minimal: The size of each share does not exceed the size of the original data

Extensible: Shares can be dynamically added or deleted without affecting existing 
shares for a given threshold

Dynamic: New shares can be generated and distributed without changing the 
secret, but by changing the polynomial occasionally (keeping the same constant 
term)

Flexible: Keys can be distributed in any combination of shares based on the 
requirement. For instance, with a threshold of 3, the president could unlock the 
safe alone if given three shares, while three secretaries with one share each must 
combine their shares to unlock the safe



Algorithm

k points on the polynomial uniquely determines a polynomial of degree less than 
or equal to k-1.

The aim is to divide a secret S into n pieces of data S1,…,Sn (known as shares) in 
such a way that: 

- The entire secret S can be reconstructed from any combination of k or more 
shares.

- Knowledge of any k-1 or fewer shares Si leaves S completely undetermined. 
(no partial information)



The process (1)

Let s be the secret, s=420. Let split it into n=8 shares, where a fraction of the 
shares, k=4, is sufficient to retrieve the secret.

We take k-1=3 numbers at random, let’s say 500, 4, and 45, and we construct the 
polynomial:

f(x) = 420 + 500x + 4x² + 45x³

We then construct the 8 keys as (1, f(1)), (2, f(2)), etc.



The process (2)

Then if we take any subset of at least k=4 shares we can reconstruct the 
polynomial using Lagrange’s theorem which states that any polynomial of degree 
d is uniquely defined by d+1 points with the following formula:

So we can reconstruct the polynomial using the subset.

In practice this is not efficient because we are computing all coefficients here 
when only the first one is interesting (so another similar formula is used).



The process (3)

All these operations are supposed to be done modulo p, where p > max(s,n)

This does not change anything to the procedure but allows for more security.

Indeed, over ℕ, if you have a fraction of the shares (less than k), then you obtain a 
system which only have a limited number of solutions in ℕ (contradict perfect 
secrecy).

Over a finite field, you get no information from the system (because mod 3 for 
example, 1=4=7 etc.)



Drawbacks

No verifiable secret sharing: no way to know to that the shares provided are true 
(and if they are not, you will not find the secret)

Single point of failure: to encrypt the secret you need at some point to have all 
information centralized (when building the polynomial and computing the shares)

Lack of standardization: there is no real unified software so coding/decoding 
might not always be using the same procedure



Applications

SSS can be used for various purposes, some examples:

Vault (by Hashicorp) is a general encryption solution for companies that 
distributes the encryption key amongst multiple computers of the company for 
increased security using SSS

SLIP-0039 (by Satoshi Labs): preserving a cryptocurrency wallet as an 
alternative to redundancy, instead of making backups just distribute shares. This 
protects against the owner of the backup stealing the assets.



Possible improvements (1)
It is possible to improve SSS in many ways, one way is to add verifiable secret 
sharing using Feldman’s scheme.

Assume that SSS has been done with shares distributed (k,f(k)), then we choose a 
cyclic field and a generator g and we compute the commitments c:

c₀ = g^a0, c₁=g^a1, etc.

then anyone can verify their share by computing g^f(k):

which can be computed using the c



Possible improvements (2)
(the previous algorithm was simplified)

Another possible improvement is Benaloh's scheme

It guarantees that each holder is able to verify that all shares are collectively 
t-consistent (any subset t of n shares will yield the same, correct, polynomial 
without exposing the secret)



References

https://web.mit.edu/6.857/OldStuff/Fall03/ref/Shamir-HowToShareASecret.pdf

https://en.wikipedia.org/wiki/Shamir%27s_secret_sharing

https://developer.hashicorp.com/vault/docs/concepts/seal

https://github.com/satoshilabs/slips/blob/master/slip-0039.md

https://en.wikipedia.org/wiki/Verifiable_secret_sharing

https://web.mit.edu/6.857/OldStuff/Fall03/ref/Shamir-HowToShareASecret.pdf
https://en.wikipedia.org/wiki/Shamir%27s_secret_sharing
https://developer.hashicorp.com/vault/docs/concepts/seal
https://github.com/satoshilabs/slips/blob/master/slip-0039.md
https://en.wikipedia.org/wiki/Verifiable_secret_sharing

