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32 Advanced Calculus

Theorem 2.9 (Stokes). Let Σ be a smooth oriented surface in R3 with boundary ∂Σ ≡ Γ. If a
vector field F(x, y, z) = (Fx(x, y, z), Fy(x, y, z), Fz(x, y, z)) is defined and has continuous first
order partial derivatives in a region containing Σ, then∫∫

Σ
(∇× F) · dΣ =

∮
∂Σ

F · dΓ

More explicitly, the equality says that∫∫
Σ

((
∂Fz

∂y
− ∂Fy

∂z

)
dy dz +

(
∂Fx

∂z
− ∂Fz

∂x

)
dz dx+

(
∂Fy

∂x
− ∂Fx

∂y

)
dx dy

)
=

∮
∂Σ

(Fx dx+ Fy dy + Fz dz) .

Note that Green’s theorem is the two-dimensional special case of Stokes’ theorem.

3 Functions of a complex variable

Reference text: [Ahl79].
The formal definition of a complex number z = x+ yi = (x, y) ∈ C := R2 is to consider the

field (R2,+, ·) with addition and multiplication

(x, y) + (u, v) = (x+ u, y + v), (x, y) · (u, v) = (xu− yv, xv + yu)

with neutral elements 0C = (0, 0) for + and 1C = (1, 0) for ·.
Note that C cannot be ordered. However, with modulus defined as |z| :=

√
x2 + y2 ∈ [0,∞)

and conjugate defined as z := x− yi, we have the analogous triangle inequalities

|z + w| ≤ |z|+ |w|, |z − w| ≥ ||z| − |w||

and Cauchy-Schwarz inequality∣∣∣∣∣∣
n∑

j=1

zjwj

∣∣∣∣∣∣ =
∣∣∣∣∣∣

n∑
j=1

zjwj

∣∣∣∣∣∣ ≤
√√√√ n∑

j=1

|zj |2
√√√√ n∑

j=1

|wj |2

mentioned earlier in §1.
A complex number z = a+ bi can be expressed by polar coordinates:

a+ bi = r cos θ + i · r sin θ

where arg(z) := θ ∈ (−π, π]. Upon multiplication of two complex numbers, the moduli are
multiplied, and the arguments are added.
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Exercise 3.1 ([SRW19], 1.4). Solve x6 = 64.

Solution. The moduli should always be 2, and the argument θ can be any value such that

6θ = 2kπ, k ∈ N0, θ ∈ [0, 2π)

Therefore, there are six possible solutions:

2 cos(kπ/3) + 2i sin(kπ/3), k ∈ J0, 5K

The extension of functions ez, log z, sin z, cos z, etc. should be natural in the sense that many
of the familiar properties of sin, cos, exp, log are retained. We define the complex exponential
function as

ea+bi := ea · (cos b+ i sin b), z = a+ bi ∈ C

and the complex sine and cosine functions as

sin(z) =
eiz − e−iz

2i
, cos(z) =

eiz + e−iz

2
, z ∈ C

Exercise 3.2 ([SRW19], 1.1). Calculate ii.

Solution. Note that i = cos(π/2) + i sin(π/2) = ei·π/2. Therefore

ii =
(
ei·π/2

)i
= e−π/2

A solution z of the equation ez = w is called a logarithm of w, denoted z = logw. Every
w ∈ C\{0} has countably many logarithms:

log(w) = log |w|+ i · (arg(w) + 2πn) , n ∈ Z,

and the principal value of the logarithm of w is set for n = 0.

4 Ordinary differential equations

Solvable first-order ODEs

1. Separable:

x′ = f(x)g(t) =⇒
∫

1

f(x)
dx =

∫
g(t) dt+ C

Exercise 4.1 ([SRW19], 1.14). Find f(x) such that

f ′(x) = f(x)(1− f(x))
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Solution. Let y = f(x). Then the equation is separable.

2. Homogeneous of degree k for some arbitrary value a:

f(at, ax) = akf(t, x)

For example, take k = 1, a = 1/t:
x′ = f(x/t)

Let y = x/t, we get
y′ · t+ y = f(y)

which reduces to case 1, a separable equation.

3. More generally, consider

x′ = f

(
ax+ bt+ c

αx+ βt+ γ

)
where a, b, c, α, β, γ are constants.

a) If c = γ = 0, rewrite it as

x′ = f

(
ax/t+ b

αx/t+ β

)
which reduces to case 2.

b) If c, γ ̸= 0, but a/α = b/β = 1/k, we let y = ax+ bt, then (noting that a is constant so
a′ = 0)

y′ = a′x+ ax′ + b = af

(
y + c

ky + γ

)
+ b

which reduces to case 1, a separable equation.

c) If c, γ ̸= 0 and a/α ̸= b/β, we solve the system{
ax+ bt+ c = 0

αx+ βt+ γ = 0

which must have a solution, say x0, t0. Take y = x− x0, s = t− t0, and we have

dy

ds
=

dx

dt
= f

(
ax+ bt+ c− 0

αx+ βt+ γ − 0

)
= f

(
ay + bs

αy + βs

)
which reduces to case 3(a).
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4. Exact:
M(x, y) dx+N(x, y) dy = 0

is exact if there exists a function g(x, y) such that

dg = M(x, y) dx+N(x, y) dy, M(x, y) =
∂g

∂x
,N(x, y) =

∂g

∂y

This happens if and only if
∂M

∂y
=

∂N

∂x

Then g(x, y) = C where C is some constant is the solution to this equation.

5. Integrating factors: if M(x, y) dx+N(x, y) dy is not exact but I(x, y) (M dx+N dy) is, I is
called an integrating factor.

a) If
1

N

(
∂M

∂y
− ∂N

∂x

)
=: g(x)

is a function of x alone, then

I(x, y) = exp

(∫
g(x) dx

)
b) If

1

M

(
∂M

∂y
− ∂N

∂x

)
=: h(y)

is a function of y alone, then

I(x, y) = exp

(
−
∫

h(y) dy

)
Then it is reduced to case 4.

6. Linear nonhomogeneous equation:

x′(t) = k(t)x+ a(t)

We multiply each side by

K(t) := exp

{
−
∫ t

t0

k(s) ds

}
Then

K(t)
(
x′ − kx

)
= (Kx)′ =⇒

∫
d(Kx) =

∫
K(t)a(t) dt+ C
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which yields the result

x(t) =
1

K(t)

(∫ t

t0

K(s)a(s) ds+ x(t0)

)
7. Some nonlinear first-order ODEs:

a) Bernoulli:
x′(t) = Ftx+ g(t)xn, n ̸= 0, 1

We let y = x1−n and have

dy

dt
= (1− n)x−nx′ = (1− n)x−n (f(t)x+ g(t)xn) = (1− n) (fy + g)

b) Ricatti:
x′(t) = f(t)x+ g(t)x2 + h(t)

Suppose we already has a particular solution p(t) so that p′ = fp+ gp2 + h. Subtract it
from the original equation and let y = x− p:

x′ − p′ = f(x− p) + g(x+ p)(x− p)

y′ = fy + g(y + 2p)y = (f(t) + g(t)2p(t)) y(t) + g(t)y2(t)

which reduces to a Bernoulli equation.

Second-order linear ODEs

We start by considering a0, a1 real constants for

y′′(x) + a1y
′(x) + a0y(x) = 0

Solve the the characteristic function

λ2 + a1λ+ a0 = 0

and get two solutions λ1, λ2.

• Case 1: if λ1, λ ∈ R, λ1 ̸= λ2:
y = c1e

λ1x + c2e
λ2x

• Case 2: if λ1,2 = a± bi, b ̸= 0 (noting that roots must be conjugate pairs):

y = d1e
(a+bi)x + d2e

(a−bi)x = eax · (c1 cos(bx) + c2 sin(bx))

• Case 3: if λ1 = λ2 = λ:
y = (c1 + c2x)e

λx
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Exercise 4.2 (Baruch). Solve 4y′′ − 4y′ + y = 0 with initial conditions y(0) = 1, y′(0) = 0.

Solution. Consider 4λ2 − 4λ + 1 = 0 whose solutions are λ1,2 = 1/2. It is a Case 3 scenario,
and thus we let

y = (c1 + c2x)e
x/2

Plugging the initial conditions, we get c1 = 1, c2 = −1/2.

Now, suppose a1 = p(x), a0 = q(x), i.e. we consider

y′′(x) + p(x)y′(x) + q(x)y(x) = 0

• Case 1: Suppose p, q are analytic, then we can let y(x) =
∑∞

n=0Akx
k and apply the power

series method.

• Case 2: A Cauchy-Euler equation has the form

t2y′′ + aty′ + by = 0 ⇐⇒ y′′ +
ay′

t
+

by

t2
= 0

We assume y = tm and plugging in we get m2 + (a− 1)m+ b = 0. Suppose this equation
has two solutions m1,2.

– if m1 ̸= m2 ∈ R, y = c1t
m1 + c2t

m2 .

– if m1 ̸= m2 ∈ C, they are conjugates, so we let m1,2 = α± βi and have

y = c1 · tα cos(β log t) + c2 · tα sin(β log t)

– if m1 = m2 = m, they can only be reals, and we have

y = c1 · tm log t+ c2 · tm

Indeed, if it is an ODE with higher order, and m becomes a root with multiplicity k,
then the basis solutions are:

tm, tm log t, tm(log t)2, tm(log t)3, . . . , tm(log t)k−1

• Case 3: the method of Frobenius: the differential equation

w′′ + p(z)w′ + q(z)w = 0

has an isolated singular point at the origin if the coefficients p and q are analytic and single-
valued in a disk |z| < R except at z = 0 (analytic in the punctured disk). The origin is a
regular singular point if p has a pole of order at most one and q a pole of order at most two
there. In other words, if the origin is a regular singular point then p(z) = z−1P (z) and
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q(z) = z−2Q(z) where P and Q are analytic and single-valued in the full disk, including
the origin. We’ll write the standard equation with a regular singular point at the origin in
the form

z2w′′ + zP (z)w′ +Q(z)w = 0.

The functions P and Q then have power-series expansions

P (z) =
∞∑
k=0

Pkz
k, Q(z) =

∞∑
k=0

Qkz
k

convergent in this disk. Then we seek a solution of the form

w(z) = zµ
∞∑
k=0

akz
k

Now suppose the equation is nonhomogeneous:

y′′(x) + p(x)y′(x) + q(x)y(x) = r(x), r(x) ̸= 0

First we solve the homogeneous equation by the methods above

y′′(x) + p(x)y′(x) + q(x)y(x)

and get a basis of two solutions b1(x), b2(x). We calculate the Wronskian:

W (x) :=

∣∣∣∣b1 b2
b′1 b′2

∣∣∣∣
and a particular solution p(x) is given as

p(x) = b1v1 + b2v2 where v1 = −
∫

r(x)b2(x)

W (x)
dx, v2 =

∫
r(x)b1(x)

W (x)
dx

Therefore, a general solution is given by

y(x) = C1b1(x) + C2b2(x) + p(x)

Exercise 4.3 ([SRW19], 1.13). Solve y′′ − 4y′ + 4y = 1.

Solution. Solving λ2−4λ+4 = 0 gives us λ1,2 = 2. Now, since RHS = 1, a particular solution
is easy to guess: yp = 1/4. Therefore, a general solution is given by

y(x) = c1e
2x + c2e

2xx+ 1/4

for some constants c1, c2.
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