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6. (law of the iterated logarithm) The goal of this problem is to prove the iterated logarithm law,
first for Gaussian random variables. In other words, for X1, X2 . . . i.i.d. standard Gaussian
random variables, denoting Sn = X1 + · · ·+Xn, we have

P
(
lim sup
n→∞

Sn√
2n log logn

= 1

)
= 1 (1.6)

(a) Prove that

P(X1 > λ) ∼
λ→∞

1

λ
√
2π
e−

λ2

2

Proof. Let x = λ+ t/λ. Following the change of variable, for every positive λ, one has

P(X > λ) =
1√
2π

∫ +∞

λ
e−x

2/2dx =
1

λ
√
2π

e−λ
2/2

∫ +∞

0
e−te−t

2/(2λ2)dt

When λ → ∞, e−t
2/(2λ2) → 1 and hence

∫ +∞
0 e−te−t

2/(2λ2)dt → 1 (as the density
function is dominated, the limit can be taken out of the integral by DCT), so that

P(X1 > λ) ∼
λ→∞

1

λ
√
2π
e−

λ2

2

In the following questions we denote f(n) =
√
2n log log n, λ > 1, c, α > 0,

Ak =
{
S⌊λk⌋ ≥ cf

(
λk
)}

,

Ck =
{
S⌊λk+1⌋ − S⌊λk⌋ ≥ cf

(
λk+1 − λk

)}
,

Dk =

{
sup

n∈Jλk,λk+1K

Sn − S⌊λk⌋
f(λk)

≥ α

}
(b) Prove that for any c > 1 we have

∑
k≥1 P(Ak) <∞ and

lim sup
k→∞

S⌊λk⌋

f(λk)
≤ 1 a.s.

Proof. Let c = 1+ ε for some ε > 0. Following part 6a, with the fact that Sn ∼ N(0, n),
one has (as (1 + ε)f(n)/

√
n→∞)

P(Sn ≥ (1 + ε)f(n)) = P(Sn/
√
n ≥ (1 + ε)f(n)/

√
n)

∼ 1

(1 + ε)
√
2 log log n

√
2π

1

(log n)(1+ε)2
≤ 1

(log n)(1+ε)2
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Replace n with ⌊λk⌋, one has

P(Ak) ≤
1

(k log λ)(1+ε)2

Hence, the series
∑

k≥1 P(Ak) converges by comparison test to
∑

n
1

n1+ε . Then, follow-
ing Borel–Cantelli, one has

P
(
lim sup
k→∞

S⌊λk⌋

f (λk)
≥ 1 + ε

)
= 0, ∀ε > 0

i.e. lim supk→∞
S⌊λk⌋
f(λk)

≤ 1 a.s..

(c) Prove that for any c < 1 we have
∑

k≥1 P(Ck) =∞ and

P(Ck i.o.) = 1

Proof. Note that Ck is pairwise independent since they are sums of different Xi, where
Xi are i.i.d. Assume λ is large enough so that f

(
λk+1 − λk

)
∈ R. Now, set Yk :=

S⌊λk+1⌋ − S⌊λk⌋, so that Yk ∼ N
(
0,
⌊
λk+1

⌋
−
⌊
λk
⌋)

. For ε > 0, one has

P
(
Yk ≥ c

(
f
(
λk+1 − λk

)))
∼ P

(
Yk ≥ c

(
f
(⌊
λk+1

⌋
−
⌊
λk
⌋))

∼
exp

(
−(1− ε)2 log

(
log
(⌊
λk+1

⌋
−
⌊
λk
⌋)))

2(1− ε)
√
π log log (⌊λk+1⌋ − ⌊λk⌋)

≥ α(k + 1)−(1+ε)2√
log(k + 1)

≥ β

(k + 1) log(k + 1)

So by comparison test to the series
∑

n
1
n , one has

∑
k≥1 P(Ck) = ∞. Since Ck are

mutually independent, by (the second) Borel-Cantelli, P(Ck i.o.) = 1.

(d) Let ε > 0 and choose c = 1 − ε/10. Prove that almost surely the following inequality
holds for infinitely many k:

S⌊λk+1⌋

f(λk+1)
≥ cf(λ

k+1 − λk)
f(λk+1)

− (1 + ε)
f(λk)

f(λk+1)
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Proof. As f(λk+1) > 0, it suffices to show that

S⌊λk+1⌋ ≥ cf(λk+1 − λk)− (1 + ε)f(λk)

Following the result of part 6c, one has

S⌊λk+1⌋ ≥ cf(λk+1 − λk) + S⌊λk⌋ i.o.

Now it suffices to show that

S⌊λk⌋ ≥ −(1 + ε)f(λk),

but this follows from that Sn is symmetric by 0, so that lim infk→∞
S⌊λk⌋
f(λk)

≥ −1 a.s.

(e) By choosing a large enough λ in the previous inequality, prove that almost surely

lim sup
n→∞

Sn
f(n)

≥ 1

Proof. Note that we λ is large enough, one has (since n increases much faster than
log log n)

f(λk+1 − λk)
f(λk+1)

→
√
λ− 1

λ
,

f(λk)

f(λk+1)
→ 1√

λ

Thus, when λ is large enough, the above inequality becomes

S⌊λk+1⌋

f(λk+1)
≥ (1− γ)

√
λ− 1

λ
− (1 + ε)

1√
λ

Taking γ → 0 and λ→∞, one has

P

(
lim sup

n

S⌊λk+1⌋

f(λk+1)
≥ (1− γ)

√
λ− 1

λ
− (1 + ε)

1√
λ
= 1

)
= 1

(f) Prove that for any n ∈ Jλk, λk+1K and Sn > 0 we have

Sn
f(n)

≤
S⌊λk⌋

f(⌊λk⌋)
+
Sn − S⌊λk⌋
f(⌊λk⌋)
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Proof. Note that f(⌊λk⌋) ≤ f(n) since f is monotonely increasing and n ≥ ⌊λk⌋, which
implies that

1

f(n)
≤ 1

f(⌊λk⌋)

=⇒ Sn
f(n)

≤ Sn
f(⌊λk⌋)

=⇒ Sn
f(n)

≤
S⌊λk⌋

f(⌊λk⌋)
+
Sn − S⌊λk⌋
f(⌊λk⌋)

(g) Prove that

P(Dk) ∼
k→∞

2P
(
X1 ≥

αf(λk)√
λk+1 − λk

)
∼

k→∞

c√
log k

(
1

k

) α2

λ−1

Proof. Note that the reflection principle of a random walk on Z gives us

P
(

max
1≤k≤n

Xk ≥ b
)

= 2P(Xn ≥ b)

Plugging in P(Dk), one has

P
(

max
n∈Jλk,λk+1K

Sn − S⌊λk⌋
f(λk)

≥ α
)

= 2P
(
S⌊λk+1⌋ − S⌊λk⌋

f(λk)
≥ α

)
(1.7)

where S⌊λk+1⌋ − S⌊λk⌋ ∼ N(0, λk+1 − λk) ∼ X1 ·
√
λk+1 − λk, so that

2P
(
S⌊λk+1⌋ − S⌊λk⌋

f(λk)
≥ α

)
= 2P

(
X1 ≥

αf(λk)√
λk+1 − λk

)
Now, following part 6a, one has

2P
(
X1 ≥

αf(λk)√
λk+1 − λk

)
= 2P

X1 ≥

√
2λk log log λk

λk+1 − λk
· α


∼

k→∞

1√
log k+log log λ

λ−1 α
√
π
e−

α2(log log λk)
λ−1

∼
k→∞

c1 ·
1√
log k

· 1

(k log λ)α2/(λ−1)

∼
k→∞

c√
log k

(
1

k

) α2

λ−1

for some constants c1 and c.

https://en.wikipedia.org/wiki/Reflection_principle_(Wiener_process)
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(h) Prove that for α2 > λ− 1, almost surely

lim sup
n→∞

Sn
f(n)

≤ lim sup
n→∞

S⌊λk⌋

f(λk)
+ α

Proof. Following part 6g, if α2 > λ− 1, then P (Dk i.o.) = 0 by Borel-Cantelli, so that

P

 sup
n∈[λk,λk+1]∩z

Sn − S⌊λk⌋
f (λk)

< α

 = 1

for k sufficiently large. Now fix n large enough that n ∈
[
λk, λk+1

]
where k is large

enough that the above holds. We obtain, provided Sn > 0 that the following holds
almost surely (for an appropriately fixed n and all sufficiently large k)

Sn
f(n)

<
Sn

f (λk)
< α+

S⌊λk⌋
f (λk)

Let k →∞. One has
Sn
f(n)

≤ α+ lim sup
k

S⌊λk⌋
f (λk)

a.s.

The result in part 6e implies there is a subsequence (nj)j≥1 such that Snj > 0 for each
j, and since the above holds for every nj (and moreover, for any Sn > 0 ), we may let
n→∞, implying that

lim sup
n

Sn
f(n)

≤ α+ lim sup
k

S⌊λk⌋
f (λk)

a.s.

(i) By choosing appropriate λ and α, prove that almost surely

lim sup
n→∞

Sn
f(n)

≤ 1

Proof. Following part 6h and part 6b above, one has

lim sup
n→∞

Sn
f(n)

≤ lim sup
n→∞

S⌊λk⌋

f(λk)
+ α ≤ 1 + α

where α >
√
λ− 1, where λ > 1 can be arbitrarily close to 1. Hence,

lim sup
n→∞

Sn
f(n)

≤ 1 + α, ∀α > 0

leading us to the desired result.
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(j) State a result similar to (1.6) for i.i.d. uniformly bounded random variables. Which steps
in the above proof need to be modified to prove this universality result? How?

Solution. Let {ϕn(x)} be a uniformly bounded orthonormal system of realvalued func-
tions on the interval [0, 1]. Then there exists a subsequence {ϕnk

(x)} and a real-valued
function f(x),

∫ 1
0 f

2(x)dx = 1, 0 ≦ f(x) ≦ B, where B is the uniform bound of
{ϕn(x)}, such that for any arbitrary sequence {ak} of real numbers satisfying

AN =
(
a21 + a22 + · · ·+ a2N

)1/2 →∞ as N →∞,

MN = o
(
AN (log logAN )

−1/2
)

where MN = max
k≦N
|ak|

we have

lim sup
SN (x)(

2A2
N log logAN

)1/2 = f(x) where SN (x) =
N∑
k=1

akϕnk
(x)

3.2 Central Limit Theorem

1. Assume (Ω,A,P) is such that Ω is countable and A = 2Ω. Prove that convergence in proba-
bility and convergence almost sure are the same.

Proof. We have proved in class that in general one has convergence a.s. implies convergence
in probability (briefly: 0 = P{lim sup{|Xn −X| > ε} ≥ lim supP{|Xn −X| > ε}, ∀ε > 0).

Now we show that convergence in probability implies convergence a.s. when Ω is countable.

SinceA = 2Ω, the singletons are measureable. Let {ωn : n ∈ N} be the set of elements whose

singletons have positive probability. It suffices to show that if Xn
P−−→ X , then Xn(ωi) →

X(ωi) for each i ∈ N.

Fix i ∈ N, ε > 0 and assume that Xn
P−−→ X . Then there is an N s.t. P({|Xn −X| ≥ ε}) <

P(ωi) whenever n ≥ N . This implies that if n ≥ N , then |Xn(ωi)−X(ωi)| < ε. By definition,

Xn
a.s.−−→ X .

2. Let (Xi)i≥1 be i.i.d. Gaussian with mean 1 and variance 3. Show that

lim
n→∞

X1 + · · ·+Xn

X2
1 + · · ·+X2

n

=
1

4
a.s.
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9. (Erdős-Kac) The goal of this exercise is to prove that if w(m) denotes the number of distinct
prime factors ofm and k is a random variable uniformly distributed on J1, nK, then the follow-
ing convergence in distribution holds:

w(k)− log log n√
log logn

−−−→
n→∞

N(0, 1)

(a) Prove that if (Xn)n≥1 converges in distribution to N(0, 1) and supn≥1 E[X2k
n ] <∞ for

any k ∈ N, then

lim
n→∞

E
[
Xk
n

]
= E

[
N(0, 1)k

]
for any k ∈ N.

Proof. Consider k = 1. Since supn E[|Xn|1+ε] < ∞ where here we have ε = 1, (Xn)n
is uniformly integrable. So that one has

lim
α→∞

sup
n

∫
|Xn|>α

|Xn|dP = lim
α→∞

sup
n

E[|Xn|1|Xn|>α] = 0

Then, X is integrable and

lim
n→∞

E [Xn] = E
[
lim
n→∞

Xn

]
= E [N(0, 1)]

Comment. The first equality may not hold since you may not have E [limn→∞Xn] at all.
They may lie in different probability spaces.

For k > 1, following the continuous mapping theorem, one has (Xk
n)n≥1 converges in

distribution to N(0, 1)k, and then it follows similarly, as supn≥1 E[X2k
n ] < ∞, from

above.

(b) Prove that for any x ∈ R and d ≥ 1 we have∣∣∣∣∣eix −
d∑
ℓ=0

(ix)ℓ

ℓ!

∣∣∣∣∣ ≤ |x|d+1

(d+ 1)!

Proof. We first show by induction that

eix =
d∑
ℓ=0

[
(ix)ℓ

ℓ!

]
+

(ix)d+1

d!

∫ 1

0
(1− u)deiux du (1.8)
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By fundamental theorem of calculus, one has eix = 1 + (ix)
∫ 1
0 e

iux du, so it is true for
d = 0. Assume inductively that 1.8 is true for d− 1, d ≥ 1. We show that it is true for d.
Integrating by parts with

U = eiux, V = −(1− u)d

d
,

dU = ixeiux du, dV = (1− u)d−1 du,

gives

(ix)d

(d− 1)!

∫ 1

0
(1− u)deiux du

=
(ix)d

(d− 1)!

[
−eiux (1− u)

d

d

∣∣∣∣u=1

u=0

+
(ix)

d

∫ 1

0
(1− u)deiux du

]

=
(ix)d

d!
+

(ix)d+1

d!

∫ 1

0
(1− u)deiux du

Hence, one has

eix =
d−1∑
ℓ=0

[
(ix)ℓ

ℓ!

]
+

(ix)d

(d− 1)!

∫ 1

0
(1− u)d−1eiux du

=
d−1∑
ℓ=0

[
(ix)ℓ

ℓ!

]
+

(ix)d

d!
+

(ix)d+1

d!

∫ 1

0
(1− u)deiux du

=
d∑
ℓ=0

[
(ix)ℓ

ℓ!

]
+

(ix)d+1

d!

∫ 1

0
(1− u)deiux du

which completes the inductive step.

Now, it follows that∣∣∣∣∣eix −
d∑
ℓ=0

(ix)ℓ

ℓ!

∣∣∣∣∣ =
∣∣∣∣(ix)d+1

d!

∫ 1

0
(1− u)deiux du

∣∣∣∣
=

∣∣∣∣(ix)d+1

d!

∣∣∣∣ · ∣∣∣∣∫ 1

0
(1− u)deiux du

∣∣∣∣
≤ |x|

d+1

d!
· 1

d+ 1
=
|x|d+1

(d+ 1)!

as desired.
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(c) Assume that
lim
n→∞

E
[
Xk
n

]
= E

[
N(0, 1)k

]
for any k ∈ N. Prove that Xn converges in distribution to X .

Proof. Let αk := E[Xk] =
∫
R x

kµ(dx). It suffices to show that the probability measure
µ is unique with the moments α1, α2, . . ., since then the distribution of the convergence
of Xn is uniquely determined to be X ∼ N(0, 1).

Note that for a standard normal, its moments are 0, 1!!, 0, 3!!, 0, 5!!, 0, 7!!, . . ., so αk ≤
k! is finite of all orders, implying that αksk/k! → 0 for some positive s. Let βk =∫∞
−∞ |x|

kµ(dx) be the absolute moments. We first show that

βkr
k

k!
−−−→
k→∞

0 (1.9)

for some positive r. Choose 0 < r < s. Since αksk/k! → 0, one has 2kr2k−1 < s2k for
large k. Since |x|2k−1 ≤ 1 + |x|2k,

β2k−1r
2k−1

(2k − 1)!
≤ r2k−1

(2k − 1)!
+
β2ks

2k

(2k)!

for large k. Hence 1.9 holds as k goes to infinity through odd values, and βk = αk for k
even, so it holds for all k.

From part 9b, one has ∣∣∣∣∣eitx
(
eihx −

n∑
k=0

(ihx)k

k!

)∣∣∣∣∣ ≤ |hx|n+1

(n+ 1)!
,

and therefore the characteristic function φ of µ satisfies∣∣∣∣∣φ(t+ h)−
n∑
k=0

hk

k!

∫ ∞

−∞
(ix)keitxµ(dx)

∣∣∣∣∣ ≤ |h|n+1βn+1

(n+ 1)!
.

Observe that the integral in the above equation is φ(k)(t), the k-th derivative of φ. By
1.9,

φ(t+ h) =

∞∑
k=0

φ(k)(t)

k!
hk, |h| ≤ r.

If ν is another probability measure with moments αk and characteristic function ψ(t),
the same argument gives

ψ(t+ h) =
∞∑
k=0

ψ(k)(t)

k!
hk, |h| ≤ r.
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Take t = 0; since φ(k)(0) = ikαk = ψ(k)(0), φ and ψ agree in (−r, r) and hence have
identical derivatives there. Taking t = r − ε and t = −r + ε in the above two equations
shows that φ and ψ also agree in (−2r+ε, 2r −ε) and hence in (−2r, 2r). But then they
must by the same argument agree in (−3r, 3r) as well, and so on. Thus φ and ψ coincide,
and by the uniqueness theorem for characteristic functions, so do µ and ν.

(d) Letwy(m) be the number of prime factors ofmwhich are smaller than y. Let (Bp)p prime

be independent random variables such that P(Bp = 1) = 1−P(Bp = 0) = 1/p. Denote

Wy =
∑
p≤y

Bp, µy =
∑
p≤y

1

p
, σ2y =

∑
p≤y

(
1

p
− 1

p2

)
Prove that if y = no(1), then for any d ∈ N we have

E

[(
wy(k)− µy

σy

)d]
− E

[(
Wy − µy

σy

)d]
−−−→
n→∞

0

Proof. Let

δp(m) =

{
1 p | m
0 p ∤ m

Then,
wy(m) =

∑
p≤y

δp(m)

Note that E
[
W d
y

]
is the sum

d∑
u=1

′∑ d!

d1! · · · du!
1

u!

′′∑
E
[
Bd1
p1 · · ·B

du
pu

]
, (1.10)

where
∑′ extends over the u tuples (d1, . . . , du) of positive integers satisfying d1+ . . .+

du = d, and
∑′′ extends over the u tuples (p1, . . . , pu) of distinct primes not exceeding

y. Since Bp assumes only the values 0 and 1, from the independence of the Bp and the
fact that the pi are distinct, it follows that the summand in 1.10 is

E [Bp1 · · ·Bpu ] =
1

p1 · · · pu
(1.11)

By definition, En
[
wdy
]

16 is just 1.10 with the summand replaced byEn
[
δd1p1 · · · δ

du
pu

]
. Since

δp(m) assumes only the values 0 and 1, given that the pi are distinct, it follows that this
16En here means

En[f ] = n−1
n∑

m=1

f(m),

and we assume that E
[(

wy(k)−µy

σy

)d
]

is calculated in this way.
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summand is

En [δp1 · · · δpu ] =
1

n

⌊
n

p1 · · · pu

⌋
(1.12)

But 1.11 and 1.12 differ by at most 1/n, and hence E
[
W d
y

]
and En

[
wdy
]

differ by at most
the sum 1.10 with the summand replaced by 1/n. Therefore,

∣∣∣E [W d
y

]
− En

[
wdy

]∣∣∣ ≤ 1

n

∑
p≤y

1

d

≤ yd

n
(1.13)

Now

E
[
(Wy − µy)d

]
=

d∑
j=0

(
d

j

)
E
[
W j
y

]
(−µy)d−j ,

and En
[
(wy − µy)d

]
has the analogous expansion. Comparing the two expansions term

for term and applying 1.13 shows that∣∣∣E [(Wy − µy)d
]
− En

[
(wy − µy)d

]∣∣∣ ≤ d∑
j=0

(
d

j

)
yj

n
µd−jy =

1

n
(y + µy)

d

Since µy ≤ y, and since yd/n→ 0 by the assumption y = no(1), one has

E

[(
wy(k)− µy

σy

)d]
− E

[(
Wy − µy

σy

)d]
−−−→
n→∞

0

as desired.

(e) Conclude.

Proof. We first want to show that

w(k)− log log n√
log logn

−−−→
n→∞

N(0, 1)

is unaffected if the range of p is further restricted with wy(m).

Proof. By Mertens’ second theorem, one has the estimate that

µy =
∑
p≤y

1

p
= log log y +O(1)

This satisfies (for example let log y = log n/ log log n) that y → ∞ slowly enough that
log y/log n→ 0 but fast enough that∑

y<p≤n

1

p
= o(log log n)1/2 (1.14)

https://en.wikipedia.org/wiki/Mertens%27_theorems
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Now, let Pn be the probability measure that places mass 1/n at each of 1, 2, . . . , n. Re-
call that δp is defined as 1 or 0 according as the prime p divides m or not. Note that if
p1, . . . , pu are distinct primes, then ∀i, pi | m iff

∏
i pi | m, so that one has

Pn [m : δpi(m) = 1, ∀i ∈ J1, uK] =
1

n

⌊
n∏u
i=1 pi

⌋
In particular when u = 1,

En

[∑
p>y

δp

]
=
∑

y<p≤n
Pn [m : δp(m) = 1] ≤

∑
y<p≤n

1

p

By 1.14 and Markov’s inequality,

Pn
[
m : |w(m)− wy(m)| ≥ ε(log log n)1/2

]
→ 0

Therefore the desired result is unaffected if wy(m) is substituted for w(m).

Now compare wy(m) with the corresponding sum Wy =
∑

p≤y Bp. The mean and vari-
ance of Sn are

µy =
∑
p≤y

1

p
, σ2y =

∑
p≤y

1

p

(
1− 1

p

)
,

and each is log log n+ o(log log n)1/2 by 1.14. Thus, it suffices to show that

Pn
[
m :

wy(m)− µy
σy

≤ x
]
→ 1√

2π

∫ x

−∞
e−u

2/2du.

Since theBp are bounded, following part 9c, it suffices to show the moments converge to
N(0, 1). Note thatBp should be replaced byBp−p−1 to center it. Thus the d-th moment
of (Wy − µy) /σy converges to that of N(0, 1). However, it is already proved in part 9d
that, as n→∞, one has

E

[(
wy(k)− µy

σy

)d]
− E

[(
Wy − µy

σy

)d]
−−−→
n→∞

0,

so we are done.

4 Dependent Random Variables

4.1 Conditioning, Radon-Nikodym Theorem

1. Let X and Y be independent Gaussian random variables with null expectation and variance
1. Show that X+Y√

2
and X−Y√

2
are also independent N(0, 1).
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Then, one has

P(|Sn+1| = y + 1 | |Sn| = y, . . . , |S1| = y1)

=
1

2
P(Sn+1 = y + 1 | Sn = y) +

1

2
P(Sn+1 = −y − 1 | Sn = −y) = 1

2

and similar for |Sn+1| = y − 1 by symmetry.

Transition matrix:

P := (Pij), Pi,i+1 =
1

2
,∀i > 0, P0,1 = 1

and zero elsewhere.

2. Consider a Markov chain X with state space {0, 1, . . . , n} and transition matrix

π(0, k) =
1

2k+1
, 0 ≤ k ≤ n− 1, π(0, n) =

1

2n

π(k, k − 1) = 1, 1 ≤ k ≤ n− 1, π(n, n) = π(n, n− 1) =
1

2
.

(a) Prove that the chain has a unique invariant probability measure µ and calculate it.

Proof. Let I = {0, 1, . . . , n}. Denote µk := µ(k), k ∈ I . It suffices to solve the system
∑n

i=0 µiπij = µj , ∀j ∈ I
µ0 + µ1 + . . .+ µn = 1

µ0, . . . , µn ≥ 0

After calculation, the system has only one solution that

µ = (µ0, . . . , µn) : µk =
1

2k+1
, k ∈ J0, n− 1K, µn =

1

2n

(b) Prove that for any 0 ≤ x0 ≤ n− 1, π(x0+1)(x0, ·) = µ.

Proof. We prove by induction and use the Chapman-Kolmogorov Equation. For x0 = 0,
π(1)(x0, ·) is by definition

π(0, k) =
1

2k+1
, 0 ≤ k ≤ n− 1, π(0, n) =

1

2n
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which corresponds with µ. Note that

π
(2)
1j =

∑
k

π1kπkj = π0j = µj , ∀j ∈ I;π(2)2j =
∑
k

π2kπkj = π1j

. . . assume π(n−1)
(n−2),j = µj , ∀j ∈ I , and note that

π
(n−1)
(n−1),j =

∑
k

π
(n−2)
(n−1),kπkj = · · · = π1j ,

=⇒ π
(n)
(n−1),j =

∑
k

π
(n−1)
(n−1),kπkj =

∑
k

π1kπkj = π0j = µj ,∀j ∈ I

Therefore, by induction, one has for any 0 ≤ x0 ≤ n− 1, π(x0+1)(x0, ·) = µ.

(c) Prove that for any 0 ≤ x0 ≤ n, π(n)(x0, ·) = µ.

Proof. When 0 ≤ x0 ≤ n − 1, π(n)x0,· = π(0, ·) = µ since µ is invariant, which implies
π(k)(0, ·) = µ.

When x0 = n, one has

π
(n)
x0,0

= P(n→ n− 1 at first step) =
1

2
,

π
(n)
x0,1

= P(n→ n→ n− 1→ · · · → 1) = P(n→ n→ n− 1) =
1

22
, . . .

Inductively, one has π(n)x0,k
= 1

2k+1 for 0 ≤ k ≤ n−1, and π(n)x0,n = 1
2n . Hence, π(n)(n, ·) =

µ as well.

(d) For any t ≥ 1, calculate

d(t) :=
1

2

n∑
x=0

∣∣∣π(t)(n, x)− µ(x)∣∣∣ ,
and plot t 7→ d(t).

Solution. Note when t ≥ n, one has π(t)n,x = µx, since we have proved π(n)n,x = µx, and
for any more steps, the distribution stays invariant. Hence, when t ≥ n, d(t) = 0. When
t < n, since n can at most go to n− t, one has

π
(t)
n,k = 0, k < n− t
π
(t)
n,k = 1/2k−(n−t)+1, n− t ≤ k ≤ n− 1

π
(t)
n,n = 1/2t
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Then, one has

d(1) =
1

2

(
n−2∑
0

µx +

(
1

2
− µn−1

)
+

(
1

2
− µn

))
= 1− µn−1 − µn

and, noting that π(t)n,x − µx > 0 as k + 1− (n− t) < k + 1,

d(t) =
1

2

(
n−t−1∑
x=0

µx +
n∑

x=n−t

∣∣∣π(t)n,x − µx∣∣∣
)

=
1

2

(
1−

n∑
x=n−t

µx + 1−
n∑

x=n−t
µx

)

= 1−
n∑

x=n−t
µx

−1 1 2 3 4 5 6 7 8 9

−0.4
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1
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d(t), n = 8

(7, 0.5)

(1, 127128)

3. For fixed p, q ∈ [0, 1], consider a Markov chainX with two states {1, 2}, with transition matrix

π = (π(i, j))1≤i,j≤2 =

(
1− p p
q 1− q

)
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5. Let X be a real-valued Markov process with transition semigroup (Qt)t≥0, let f : R → [0, 1]
be measurable, and let t0 > 0. Prove that the process Mt = Qt0−tf (Xt) is a martingale for
t ∈ [0, t0].

Proof. We show Mt is a Px martingale where X = (Xt,Px). By assumption, Mt is integrable
and Ft-adapted. It suffices to show E[Mt|Fs] = Ms for 0 ≤ s < t ≤ t0. Note that, by
definition [Gal16, Def. 6.2], Ms = Qt0−sf(Xs) = E[f(Xt0)|Fs] while Mt = E[f(Xt0)|Ft].
Since Fs ⊂ Ft, by iterated conditioning law, one has

E[Mt|Fs] = E [E[f(Xt0)|Ft]|Fs] = E[f(Xt0)|Fs] =Ms

as desired.

10 Stochastic Differential Equations

1. In this exercise we will prove weak existence and weak uniqueness of solutions of the stochastic
differential equation

E(σ, b) : dXt = σ (Xt) dWt + b (Xt) dt (2.5)

where σ, b : R → R are bounded and continuous such that
∫
R |b(x)|dx < ∞ and σ ≥ ε for

some ε > 0. We will also argue pathwise uniqueness if σ is Lipschitz.

(a) First we study the case b = 0. Suppose that X solves equation 2.5, and for each t ≥ 0
define

At =

∫ t

0
σ (Xs)

2 ds, τt = inf {s ≥ 0 : As > t}

Justify the equalities

τt =

∫ t

0

dr

σ (Xτr)
2 , At = inf

{
s ≥ 0 :

∫ s

0

dr

σ (Xτr)
2 > t

}

Proof. When b = 0, Xt =
∫ t
0 σ(Xs) dWs, is continuous. Then σ(Xt) is continuous, so

At is continuously differentiable, and σ(Xt) > ϵ so At is strictly increasing. So τt is the
inverse of At and

d

dt
τt =

(
d

ds
As

∣∣∣∣
τt

)−1

= σ(Xτt)
−2 =⇒ τt =

∫ t

0

1

σ(Aτr)
2
dr,

Then τt is increasing, so that

At := inf

{
s ≥ 0 :

∫ t

0

dr

σ(Xτr)
2
> t

}
as desired.



140 CHAPTER 2. STOCHASTIC ANALYSIS

(b) In the setting of (a), argue that there is a Brownian motion (Bt)t≥0 started from x such
that, a.s. for every t ≥ 0, Xt = Binf{s≥0:

∫ s
0 σ(Br)

−2dr>t}.

Proof. By part (a), for b = 0, X is a continuous local martingale, ⟨X⟩t = At strictly
increasing, and ⟨X⟩∞ = ∞, then by [Bas11, Thm. 12.2], Bt := Xτt defines a Brownian
motion starting at x and

Xt = B⟨X⟩t = Binf{s≥0:
∫ s
0 σ(Xτr )

−2dr>t} = Binf{s≥0:
∫ s
0 σ(Br)−2dr>t}

as desired.

(c) Show that weak existence and weak uniqueness hold for E(σ, 0).

Proof. (Weak existence). Let B be a Brownian motion starting at x. Define

Yt :=

∫ t

0

1

σ(Bs)
dBs,

and let τt and At be s.t.

τt := ⟨Y ⟩t =
∫ t

0

1

σ(Bs)2
ds, At := inf{s ≥ 0 : τs > t},

then since ⟨Y ⟩∞ = ∞ a.s., then by [Bas11, Thm. 12.2], Wt := YAt defines a Brownian
motion starting at x, and

n−1∑
k=1

σ(BAtk/n
)(YAt(k+1)/n

− Ytk/n)
P−→
∫ t

0
σ(BAs)dYAs ,

so that ∫ t

0
σ(BAs)dWs =

∫ t

0
σ(BAs)dYAs =

∫ At

0
σ(Bs)dYs

Also, ∫ t

0
σ(Bs)dYs =

∫ t

0
dBs = Bt,

so that we can let Xt := BAt = Binf{s≥0:
∫ s
0 σ(Br)−2dr>t}. Then, X0 = x and

Xt = BAt =

∫ t

0
σ(BAs)dWs =

∫ t

0
σ(Xs)dWs

(Weak uniqueness). We’ve shown that Xt = Binf{s≥0:
∫ s
0 σ(Br)−2dr>t}. Since X is con-

tinuous and the finite dimensional distribution is determined by a Brownian motion, the
law of X is unique.
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(d) Show that there exists a monotone increasing and twice continuously differentiable func-
tion F : R→ R such that F (Xt) is a martingale. Give an explicit formula for F in terms
of σ and b.

Proof. Suppose F ∈ C2(R). By Ito’s formula, one has

F (Xt) = F (X0) +

∫ t

0
F ′(Xs)dXs +

1

2

∫ t

0
F ′′(Xs)d⟨X⟩s

=

∫ t

0
F ′(Xs)σ(Xs)dWs +

∫ t

0
F ′(Xs)b(Xs)dt+

1

2

∫ t

0
F ′′(Xs)σ(Xt)

2dt,

so F (Xt) is a martingale iff the dt term F ′(Xt)b(Xt) +
1
2F

′′(Xt)σ(Xt)
2 = 0, implying

that

F ′(x) = exp

(
−
∫ x

0

2b(s)

σ(s)2
ds

)
, F (x) =

∫ x

0
exp

(
−
∫ t

0

2b(s)

σ(s)2
ds

)
dt,

Note that F ′ > 0, so F is monotone increasing as desired.

(e) Show that Yt = F (Xt) solves an SDE of the form dYt = σ′ (Yt) dWt and determine the
function σ′.

Proof. By part (d), one has dYt = dF (Xt) = F ′(Xt)σ(Xt)dWt. Note that F ′(x) ≥
exp
(
−2ϵ−2

∫
R |b(t)|dt

)
, so F : R→ R is bijective, and hence F−1 exists. Then, one has

E′ (σ′) : dYt = dF (Xt) = F ′(F−1(Yt))σ(F
−1(Yt))dWt = σ′(Yt)dWt

where σ′ = (F ′ · σ) ◦ F−1.

(f) Using parts (a)-(c), show that weak existence and weak uniqueness hold forE(σ, b), along
with pathwise uniqueness if σ is Lipschitz.

Proof. First note that by part (c) along with the fact that σ′ : R 7→ R is continuous
and that σ′ ≥ ϵ exp

(
−2ϵ−2

∫
R |b(t)|dt

)
, weak existence and weak uniqueness hold for

E′ (σ′).

Weak existence ofE(σ, b): fix x ∈ R. Set y = F (x). There exists a solution Y ofE′
y (σ

′).
Define Xt := F−1 (Yt). By Itô’s formula, we get

Xt = x+

∫ t

0

dF−1

dy
(Ys) dYs +

1

2

∫ t

0

d2F−1

dy2
(Ys) d⟨Y, Y ⟩s.

By F−1(F (x)) = x, we get

dF−1

dy
(F (x))

dF

dx
(x) = 1,

d2F−1

dy2
(F (x))

(
dF

dx
(x)

)2

+
dF−1

dy
(F (x))

d2F

dx2
(x) = 0
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Thus,

dF−1

dy
(Ys) =

dF−1

dy
(F (Xs)) = e

∫X
0

2b(r)

σ(r)2
dr
,

d2F−1

dy2
(Ys) =

2b (Xs)

σ (Xs)
2 e

2
∫Xs
0

2b(r)

σ(r)2
dr

Since dYt = σ′ (Yt) dWt = e
−

∫Xt
0

2b(r)

σ(r)2
dr
σ (Xt) dWt, one has

Xt = x+

∫ t

0

dF−1

dy
(Ys) dYs +

1

2

∫ t

0

d2F−1

dy2
(Ys) d⟨Y, Y ⟩s

= x+

∫ t

0
σ (Xs) dWs +

∫ t

0
b (Xs) ds

and soX is a solution ofEx(σ, b). Weak uniqueness ofX immediately follows from weak
uniqueness of Y .

Pathwise uniqueness ofE(σ, b): given σ is Lipschitz, it suffices to show that σ′ is Lipshitz.
Indeed, let c0 > 0 be such that |σ(x1)− σ(x2)| ≤ c0|x1 − x2|, also let

c1 := sup
R
|F ′′|, c2 := sup

R
|Ḟ−1|, c3 := sup

R
|F ′|, c4 := sup

R
|σ|

which are all bounded, so that

|σ′(y1)− σ′(y2)| =
∣∣(F ′(F−1(y1))σ((F

−1(y1))− (F ′(F−1(y2))σ((F
−1(y2))

∣∣
≤ (c1c4 + c0c3) · c2 · |y1 − y2|

is bounded, so σ′ is Lipschitz.

2. Let W be a Brownian motion and let a > 1/2 and z0 > 0. This exercise proves that there is a
unique positive semimartingale Z such that for every t ≥ 0,

Zt = z0 +Wt +

∫ t

0

a

Zs
ds (2.6)

This process is known as a Bessel process.

(a) For n ∈ N define fn : R → R+by fn(x) = |x|−1 ∧ n. Justify the existence of a unique
semimartingale Zn that solves

Znt = z0 +Wt + a

∫ t

0
fn (Z

n
s ) ds
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where either limit goes to 0. Hence,

u(x) = Ex [g (BT )] = Ex
[
g (BU1)1{U1<U0}

]
= 0, ∀x ∈ B⋆1

but then, u(x)→ 0 ̸= g(0) = 1 as x→ 0, x ∈ B⋆1 . Contradiction!

6. [Gal16, Exercise 7.26] In this exercise, d ≥ 3. Let K be a compact subset of the open unit ball
of Rd, and TK := inf {t ≥ 0 : Bt ∈ K}. We assume that D := Rd\K is connected. We also
consider a function g defined and continuous on K . The goal of the exercise is to determine
all functions u : D̄ → R that satisfy:

(P) u is bounded and continuous on D̄, harmonic on D, and u(y) = g(y) if y ∈ ∂D.

(This is the Dirichlet problem inD, but in contrast with [Gal16, Sec. 7.3] above,D is unbounded
here.) We fix an increasing sequence (Rn)n≥1 of reals, with R1 ≥ 1 and Rn ↑ ∞ as n → ∞.
For every n ≥ 1, we set T(n) := inf {t ≥ 0 : |Bt| ≥ Rn}.

(a) Suppose that u satisfies (P). Prove that, for every n ≥ 1 and every x ∈ D such that
|x| < Rn

u(x) = Ex
[
g (BTK )1{TK≤T(n)}

]
+ Ex

[
u(BT(n)

)1{T(n)≤TK}

]

Proof. Note that x ∈ D = Rd\K but |x| < Rn, so the bounded domain is in fact
B(0, Rn)\K . Let T = inf{t ≥ 0 : Bt /∈ BRn\K}. By [Gal16, Prop. 7.7], one has
for every x ∈ BRn\K , as it either exits first to > Rn or to ∈ K ,

u(x) = Ex[g(BT )] = Ex
[
g (BTK )1{TK≤T(n)}

]
+ Ex

[
u
(
BT(n)

)
1{T(n)≤TK}

]
as desired.

(b) Show that, by replacing the sequence (Rn)n≥1 with a subsequence if necessary, we may
assume that there exists a constant α ∈ R such that, for every x ∈ D,

lim
n→∞

Ex
[
u(BT(n)

)
]
= α

and that we then have
lim

|x|→∞
u(x) = α

Proof. We try to apply Liouville’s theorem [Eva98, Thm. 2.8] which requires the function
defined on all of Rn. Let

fn(x) := Ex
[
u
(
BT(n)

)]
∀x ∈ BRn , n ≥ 1
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Note that u is bounded, so is fn, and by [Gal16, Prop. 7.7.ii], fn is harmonic (applying
strong Markov property). It now suffices to find an increasing (sub)sequence s.t. the limit
of fn converges uniformly on every compact subset K ⊂ Rd for every x ∈ Rd.

We want to show that {fn} is equicontinuous on B(p, r) for every p ∈ Qd and r ∈ Q+.
Since then, by applying Arzelà-Ascoli theorem, there exists an increasing subsequence
nk such that fnk

(x) converges uniformly on B(p, r), and we’re done.

Indeed, let p ∈ Qd, r ∈ Q+ andM := supz∈D̄ |u(z)|. ChooseN ≥ 1 such that B(p, r) ⊂
BRN

and η := d (B(p, r), ∂BRN
) > 0. By local estimates for harmonic function, there

exists some c > 0 such that for n ≥ N one has

|dfn(x)| ≤
c

(η/2)d+1
∥fn∥L1(B(x,η/2)) ≤

cM

η/2
∀x ∈ B(p, r + η/2)

Let x, y ∈ B(p, r) such that |x− y| < η
2cM ϵ for some ϵ > 0. Then

|fn(x)− fn(y)| ≤ sup
z∈B(p,r+η/2)

|dfn(z)||x− y| < ϵ

Hence, by letting the subsequence nk start atN and setting f(x) := limk→∞ fnk
(x), one

has f(x) = limn→∞ Ex
[
u(BT(n)

)
]
= α a constant by Liouville’s theorem.

Now, note that M is finite, and one can always pick some nj large enough such that
Px(T(nj) > TK) < ϵ for any ϵ > 0, so that

|u(x)− α| ≤ c1 · ϵ
|x|→∞−−−−→ 0

for some constant c1, as desired.

(c) Show that, for every x ∈ D,

u(x) = Ex
[
g (BTK )1{TK<∞}

]
+ αPx (TK =∞)

Proof. Note that limt→∞ |Bt| =∞ [Gal16, Thm. 7.17], but we have shown thatu(x)
|x|→∞−−−−→

α, so Tnk
<∞ a.s. for every k ≥ 1. Therefore, one has

Ex
[
u
(
BTnk

)
1{Tnk

≤TK}
]

=Ex
[
u
(
BTnk

)
1{Tnk

≤TK<∞}
]
+ Ex

[
u
(
BTnk

)
1{Tnk

<∞}∩{TK=∞}

]
k→∞−−−→ 0 + αPx (TK =∞)
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By parts (a) and (b), one has

u(x) = lim
k→∞

Ex
[
g (BTK )1{TK≤Tnk}

]
+ lim
k→∞

Ex
[
u
(
BTnk

)
1{Tnk

≤TK}
]

= Ex
[
g (BTK )1{TK<∞}

]
+ αPx (TK =∞)

as desired.

(d) Assume that D satisfies the exterior cone condition at every y ∈ ∂D (this is defined in
the same way as when D is bounded). Show that, for any choice of α ∈ R, the formula
of part (c) gives a solution of the problem (P).

Proof. By [Gal16, Prop. 7.7.ii], u(x) is harmonic. Now it suffices to show that

lim
x∈D→y

u(x) = g(y)

for every y ∈ ∂D. Since then, by [Gal16, Thm. 7.8] we’re done. Note that in the theorem
D bounded is only required for finite hitting time, so it does not affect its validity here.

Denote M := supz∈K |g(z)|. Fix ϵ > 0 and y ∈ ∂D. Choose δ > 0 such that

|g(z)− g(y)| < ϵ ∀z ∈ K ∩B(y, δ)

Choose η > 0 such that

P0

(
sup
t≤η
|Bt| ≥

δ

2

)
< ϵ

Observe that

lim
x∈D→y

Px (TK > η) = 0

(This proof is the same as the proof of lemma 7.9) and so there exists δ′ > 0 such that

Px (TK > η) < ϵ ∀x ∈ D ∩B
(
y, δ′

)
Let x ∈ D

⋂
B
(
y, δ′ ∧ δ

2

)
. Then

Px

(
sup
t≤η
|Bt − x| ≥

δ

2

)
= P0

(
sup
t≤η
|Bt| ≥

δ

2

)
< ϵ
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and so

|u(x)− g(y)| ≤Ex
[
|g (BTK )− g(y)| 1{TK≤η}

]
+

Ex
[
|g (BTK )− g(y)| 1{η<TK<∞}

]
+ (g(y) + α)Px (TK =∞)

≤Ex
[
|g (BTK )− g(y)| 1{TK≤η}1{supt≤η |Bt−x|< δ

2}
]
+

2MPx

(
sup
t≤η
|Bt − x| ≥

δ

2

)
+

Ex
[
|g (BTK )− g(y)| 1{η<TK<∞}

]
+ (g(y) + α)Px (TK =∞)

≤ ϵ+ 2Mϵ+ 2MPx (η < TK <∞) + (g(y) + α)P (TK =∞)

≤ ϵ+ 2Mϵ+ (3M + α)Px (TK > η) < ϵ+ 2Mϵ+ (3M + α)ϵ

(e) Show that, for every x ∈ D,

u(x) = Ex
[
g (BTK )1{TK<∞}

]
+ αPx (TK =∞)

Proof. Note that limt→∞ |Bt| = ∞ [Gal16, Thm. 7.17], but we have shown in (b) that

u(x)
|x|→∞−−−−→ α, so Tnk

<∞ a.s. for every k ≥ 1. Then, passing to the limit, one has

Ex
[
u
(
BTnk

)
1{Tnk

≤TK}
]

=Ex
[
u
(
BTnk

)
1{Tnk

≤TK<∞}
]
+ Ex

[
u
(
BTnk

)
1{Tnk

<∞}∩{TK=∞}

]
k→∞−−−→ 0 + αPx (TK =∞)

By parts (a) and (b), one has

u(x) = lim
k→∞

Ex
[
g (BTK )1{TK≤Tnk}

]
+ lim
k→∞

Ex
[
u
(
BTnk

)
1{Tnk

≤TK}
]

= Ex
[
g (BTK )1{TK<∞}

]
+ αPx (TK =∞)

as desired.

(f) Assume that D satisfies the exterior cone condition at every y ∈ ∂D (this is defined in
the same way as when D is bounded). Show that, for any choice of α ∈ R, the formula
of part (c) gives a solution of the problem (P).

Proof. By [Gal16, Prop. 7.7.ii], as the entire function inside the expectation is bounded
measurable, u(x) is harmonic. Now it suffices to show that

lim
x∈D→y

u(x) = g(y)
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for every y ∈ ∂D. Since then, by [Gal16, Thm. 7.8] we’re done. Note that in the theorem
D bounded is only required for finite hitting time, so it actually does not affect its validity
here.

The remaining follows similarly [Gal16, Thm. 7.8]. Let M be such that |g(z)| ≤ M for
every z ∈ K . Let ϵ > 0. Choose δ > 0 such that |g(z) − g(y)| < ϵ, ∀z ∈ K ∩ B(y, δ),
and choose η > 0 such that P0

(
supt≤η |Bt| ≥ δ/2

)
< ϵ. By [Gal16, Lemma 7.9], one has

limx∈D→y Px (TK > η) = 0, so there exists δ1 > 0 such that

Px (TK > η) < ϵ, ∀x ∈ D ∩ B (y, δ1)

Let x ∈ D ∩ B (y, δ1 ∧ δ/2). Then

Px

(
sup
t≤η
|Bt − x| ≥

δ

2

)
= P0

(
sup
t≤η
|Bt| ≥

δ

2

)
< ϵ,

so that

Ex
[
|g (BTK )− g(y)|1{TK≤η}

]
=Ex

[
|g (BTK )− g(y)|1{TK≤η}1{supt≤η |Bt−x|< δ

2}
]
+

Ex
[
|g (BTK )− g(y)|1{TK≤η}1{supt≤η |Bt−x|≥ δ

2}
]

≤Ex
[
|g (BTK )− g(y)|1{TK≤η}1{supt≤η |Bt−x|< δ

2}
]
+

2MPx
(
supt≤η |Bt − x| ≥ δ/2

)
≤ ϵ+ 2Mϵ

Hence, one has

|u(x)− g(y)| ≤Ex
[
|g (BTK )− g(y)|1{TK≤η}

]
+

Ex
[
|g (BTK )− g(y)|1{η<TK<∞}

]
+ (g(y) + α)Px (TK =∞)

≤ ϵ+ 2Mϵ+ 2MPx (η < TK <∞) + (g(y) + α)P (TK =∞)

≤ ϵ+ 2Mϵ+ (3M + α)Px (TK > η)

<ϵ+ 2Mϵ+ (3M + α)ϵ
ϵ↓0−−→ 0

as desired.

12 Convergence of Probability Measures

Remark. For the following, you’re allowed to use that if (E, d) is a separable metric space then the
following defines a metric on the set of probability measures on E:

dE(P,Q) = inf{ε > 0 : P(F ) ≤ Q(Fε) + ε for all F closed}
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