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36 CHAPITER 1. LIMIT THEOREMS

6. (law of the iterated logarithm) The goal of this problem is to prove the iterated logarithm law,
first for Gaussian random variables. In other words, for X7, X5 ... ii.d. standard Gaussian
random variables, denoting S,, = X1 + - - - + X,,, we have

Sn
Pl — =1 =1 1.6
< lgljgp v2nloglogn > (1.6)

(a) Prove that
P(X1 > \) L%
~ e
! A—o00 M\ 21

Proof. Let x = A + t/\. Following the change of variable, for every positive A, one has

P(X >)\) = L /+Oo o T2y = LN /+OO e tet2/(23) gy
m A )\\/ 2 0

When A — oo, e /(%) 5 1 and hence f0+oo e~te /N qt 5 1 (as the density
function is dominated, the limit can be taken out of the integral by DCT), so that
1 A2

]P(Xl > )\) )\:OO /\me_ 2

In the following questions we denote f(n) = /2nloglogn, A > 1, ¢, > 0,

A = {SL/\H 2 cf (/\k>}’
Cy, = {SL/\HIJ ~ Sy = ef (AHI - Ak)} ’

. Sn = Spw)
B = sup ——— >«
neprk]  fF)

(b) Prove that for any ¢ > 1 we have } ;- P(A;) < oo and

lim sup S <las
koo fOAF) T

Proof. Let ¢ = 1 + ¢ for some € > 0. Following part 6a, with the fact that S,, ~ N (0, n),
one has (as (1 + ) f(n)/v/n — o)

P(Sp = (1+¢)f(n)) =P(Sn/vn = (1 +¢)f(n)/Vn)
1 1 1

<
(1 +¢e)v/2loglog ny/2m (log n)(1+e)? = (logn)(+e)?

~
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Replace n with | \¥], one has

1

PA) < ——
() = Griog nyier

Hence, the series ) ;- P(Aj) converges by comparison test to > # Then, follow-
ing Borel-Cantelli, one has

S
P <lim sup )

>14¢) =0, Ve>0
k—o0 f(Ak) )

S|ak]
F(AF)

(c) Prove that for any ¢ < 1 we have } ;- P(C}) = oo and

ie. limsup;_, <las. Ol

P(C&,LO) =1

Proof. Note that C}, is pairwise independent since they are sums of different X;, where
X; are iid. Assume X is large enough so that f (AF*! — )\k) € R. Now, set Y}, :=
SL,\kHJ — SL/\kJ’ so that Y, ~ N (0, L)\kHJ — L/\kJ) For € > 0, one has

(1 (0 ) 2 (025 (0] [¥])
_exp (—(1 —¢e)?log (log (|AFF1] — [AF])))
2(1 — g)/mloglog ([ M\FF1] — [\F])
>am+n4HW
log(k + 1)

B
= et Dlog(k+ 1)

So by comparison test to the series Y L, one has > k>1 P(Ck) = oo. Since Cj are
mutually independent, by (the second) Borel-Cantelli, P(C} i.0.) = 1. O

(d) Let & > 0 and choose ¢ = 1 — £/10. Prove that almost surely the following inequality
holds for infinitely many k:

F%)

Spwry _ fOR =A%)
f(Ak+1)

FORTL) = ¢ FOWTT)

—(1+4¢)
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Proof. As f(AF1) > 0, it suffices to show that
Spaer) > ef A=A — (1 4+2) f(AF)
Following the result of part 6c, one has
Spaert) = ef A=A + 83 o
Now it suffices to show that

Siae = —(L+e) f(A9),

S

but this follows from that .S,, is symmetric by 0, so that lim infj_, f“kJ —las. [

(AF) =

By choosing a large enough ) in the previous inequality, prove that almost surely

lim sup

msup oy > 1

Proof. Note that we A is large enough, one has (since n increases much faster than
loglogn)
f()\k+1 )\k _ 1 1
AR+ )\ f( )\k+1 f

Thus, when ) is large enough, the above inequality becomes

SW"“J A—1 1
FOF) > (1-9) N (1 +5)\f/\

Taking v — 0 and A — o0, one has
S| ak+1 [A—1
. [AR+L]

Prove that for any n € [A\¥, \**1] and S,, > 0 we have

1>:1

§\H

Sn SLAkJ Sn — SP\kJ
7o) = T T TRDR)
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Proof. Note that f(|\*|) < f(n) since f is monotonely increasing and n > | \* |, which
implies that

1 - 1
f(n) = F(IN])
Sn Sh
f— S

= < F z
f) = FAAR])  FOR])
O]
(g) Prove that
2
k 3T
P(Dy) ~ 2P Xlzw ~ ¢ 1y
k—o0 Netl Nk ) k—oo \/logk \ k
Proof. Note that the reflection principle of a random walk on Z gives us
P ( max Xj > b) =2P(X,, >b)
1<k<n
Plugging in P(Dy), one has
S - S k S k+1| — S k
n A*] AR A"
P _— > =P " > .
(eetitton 7o 2 ) =2 (P L 2a) 09

where S| yi+1] — S|k ~ N (0, XL — M) ~ X - V/ARFL — AE 50 that

Sk+1 _Sk k
o (i a0) (12 L)

Now, following part 6a, one has

af(A\F) B 2)\* loglog Ak

1 az(log log )\k)
~ e -1
k—o0 log k+log log A
PRI o /T
1 1

koo b Vlogk  (klog A)2?/O—1)
2

@

c 1\ -1
ko0 log k (/{:)

for some constants ¢; and c. ]
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(h) Prove that for o> > X\ — 1, almost surely

S
lim sup i < lim sup A +«

Proof. Following part 6g, if a® > A\ — 1, then P (Dy, i.0.) = 0 by Borel-Cantelli, so that

Rt

P sup <ap,=1

ne[)\k,)\k"'l]ﬂz f (Ak)

for k£ sufficiently large. Now fix n large enough that n € [)\k, )\k+1] where k is large
enough that the above holds. We obtain, provided S,, > 0 that the following holds
almost surely (for an appropriately fixed n and all sufficiently large k)

S S, x|

ORIy

Let £ — oo. One has g
Sh ) | Ak |
< a4+ limsup
fn) ko f(AY)
The result in part 6e implies there is a subsequence (1) i>1 such that S,,; > 0 for each
J, and since the above holds for every n; (and moreover, for any S,, > 0 ), we may let

n — oo, implying that

a.s.

S,
lim sup—n < a+ limsup

n o fn) ko fOF)

(i) By choosing appropriate A and «, prove that almost surely

S,
limsup —— < 1

n—oo f(n)

Proof. Following part 6h and part 6b above, one has

1imsupi < lim sup S +a<l+a

where @ > /A — 1, where A\ > 1 can be arbitrarily close to 1. Hence,

n

S,
limsup — <1+a, VYa>0
n—oo f(1)

leading us to the desired result. O
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(j) State a result similar to (1.6) for i.i.d. uniformly bounded random variables. Which steps
in the above proof need to be modified to prove this universality result? How?

Solution. Let {¢,(z)} be a uniformly bounded orthonormal system of realvalued func-
tions on the interval [0, 1]. Then there exists a subsequence {¢,, (z)} and a real-valued
function f(a:),fol f?(x)dz = 1,0 £ f(z) < B, where B is the uniform bound of
{én(x)}, such that for any arbitrary sequence {ay} of real numbers satisfying

AN:(a%—l—a%—i—-'-—l—a%\;)lm—>ooasN—>oo,

My =o (AN (loglogAN)_l/z) where My = max |ag|

we have

Sn ()
(242, 1oglog Ay) "
n loglog N)

lim sup

N
= f(xz) where Sy(z) = Zak¢nk (z)
k=1

3.2 Central Limit Theorem

1. Assume (Q, A, P) is such that 2 is countable and .A = 2. Prove that convergence in proba-
bility and convergence almost sure are the same.

Proof. We have proved in class that in general one has convergence a.s. implies convergence
in probability (briefly: 0 = P{lim sup{|X,, — X| > ¢} > limsup P{|X,, — X| > €}, Ve > 0).

Now we show that convergence in probability implies convergence a.s. when (2 is countable.
Since A = 2%, the singletons are measureable. Let {w,, : n € N} be the set of elements whose
singletons have positive probability. It suffices to show that if X, I x , then X, (w;) —
X (w;) for each i € N.

Fix i € N, > 0 and assume that X,, — X. Then there is an N s.t. P{|X, - X|>¢}) <
P(w;) whenever n > N. This implies thatif n > N, then | X, (w;) — X (w;)| < €. By definition,

X, 2 X, O
2. Let (X;);>1 be i.i.d. Gaussian with mean 1 and variance 3. Show that

. X1+ 4+ X, 1
lim 2—2:7 a.s.
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9. (Erdés-Kac) The goal of this exercise is to prove that if w(m) denotes the number of distinct
prime factors of m and k is a random variable uniformly distributed on [[1, n], then the follow-
ing convergence in distribution holds:

(a)

(b)

w(k) — loglogn
vloglogn n—00

Prove that if (X, ),>1 converges in distribution to .4 (0, 1) and sup,,>; E[X?¥] < oo for
any k € N, then

N(0,1)

s 5[] =z [0

for any k € N.

Proof. Consider k = 1. Since sup,, E[|X,,|'*¢] < oo where here we have ¢ = 1, (X,,),,
is uniformly integrable. So that one has

lim sup/ | Xy dP = lim sup E[|X,[1|x, 5] =0
[ Xn|>a Q=0 p

Then, X is integrable and

lim E[X,] =E [ lim Xn} — E[A(0,1)]

n—o0 n—oo

Comment. The first equality may not hold since you may not have E [lim,,_, o, X,,] at all.
They may lie in different probability spaces.

For k > 1, following the continuous mapping theorem, one has (X*),,>1 converges in
distribution to .4 (0,1)*, and then it follows similarly, as sup,,>; E[X2*] < oo, from

above. O
Prove that for any z € R and d > 1 we have
) d (ix)z |x’d+1
ey o] o
prd 0! (d+1)!

Proof. We first show by induction that

: )d+1

d i)l 1
e = Z [(IZ) ] + (1xd! /0 (1 — u)e™® du (1.8)
/=0
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By fundamental theorem of calculus, one has e'* = 1
d = 0. Assume inductively that 1.8 is true ford — 1,d
Integrating by parts with

+ (iz) fol el du, so it is true for
> 1. We show that it is true for d.

: (1 —u)?
U = elu® —
e, \% 7
dU = ize™ du, AV = (1 — )% du,
gives
iz ¢ ! iux
(d( _)1)' /0 (1 —u)e™ du
(iz) e (L= w)? " (iz) /1 d i
— _iux ) 1 uz g
a—u | ¢ | Ta A du
(ix)d (ix)d'H /1 4
= (1 —u)% """ du
d! d! 0
Hence, one has
d—-1 27 d 1
elr — (12) Cgll')l ' / (1 _ u)d—leiuz du
/=0 L ( - )' 0
d=1 /e coyd o (aydHl ol ‘
_ (1$) + (1.’E> (13?) (1 _ u)deluaz du
2! d! d! 0
(=0 -
d ¢ coNd+1 pl .
_ (ICC) + (I.CC) (1 o u)delux du
2 d! 0
/=0

which completes the inductive step.

Now, it follows that

d .
ix (lx)é
=2

(=0

(ix)dJrl

1
i / (1 —u)de™® du
! 0

_ (ix)dJrl ! d _iux
a1 (1 —u)% """ du
‘x’d+1 1 B ]a:\CHl

= d d+1 (d+1)

as desired. O
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(c) Assume that

lim E [X]j} —E [JV(O, 1)’“}

n—0o0

for any k£ € N. Prove that X,, converges in distribution to X.

Proof. Let o, := E[X*] = [, 2" u(dx). It suffices to show that the probability measure
1 is unique with the moments o, g, . . ., since then the distribution of the convergence
of X, is uniquely determined to be X ~ A (0,1).

Note that for a standard normal, its moments are 0, 1!!,0, 3!, 0,5!1,0,7!!,.. ., so ap <
k! is finite of all orders, implying that ays*/k! — 0 for some positive 5. Let 8}, =
J7 |z|*u(dx) be the absolute moments. We first show that

Byrk
k! k—o0 0 (1'9)

for some positive 7. Choose 0 < r < s. Since ays*/k! — 0, one has 2kr?#~1 < 52 for
large k. Since |z|2*~1 < 1 + ||,
/3216717'21{:71 T2k71 N ﬁQkSQk
2k -1 — 2k-1)!  (2k)!

for large k. Hence 1.9 holds as k goes to infinity through odd values, and 5 = «y, for k
even, so it holds for all k.

From part 9b, one has

) ) no k n+1
e1tw (elh:c . (lhi‘) )‘ < |h$|

— k! ~ (n+1)!

and therefore the characteristic function ¢ of 4 satisfies

— (n+1)!

n hk: 00 ) h n+1 o
o(t+h)— Z o / (izx)*el p(dz)| < [R[" B
k=0 =~ Y7

Observe that the integral in the above equation is ¢(*)(¢), the k-th derivative of ¢. By
1.9,

hE,|h <.

(k)
k=0 )

If v is another probability measure with moments «, and characteristic function 1 (t),
the same argument gives

20 (k)
Y(E+h) =) vO(0) hE,|n| <.
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Take ¢t = 0; since o) (0) = i*ay, = ¥#)(0), ¢ and ¢ agree in (-7, 7) and hence have
identical derivatives there. Taking t = r — € and t = —r + ¢ in the above two equations
shows that ¢ and ¢ also agree in (—2r +¢, 2r —¢) and hence in (—27, 2r). But then they
must by the same argument agree in (—3r, 3r) as well, and so on. Thus ¢ and v coincide,
and by the uniqueness theorem for characteristic functions, so do p and v. O

Let wy(m) be the number of prime factors of m which are smaller than y. Let (B})p prime
be independent random variables such that P(B, = 1) = 1 —P(B, = 0) = 1/p. Denote

1 1 1
=38 m=Y 1 =3 ()
p<y p<y Py

Prove that if y = n°(1), then for any d € N we have

()] [ ]

5p(m):{1 plm

0 pitm

m) = dy(m)

p<y

E —-E

Proof. Let

Then,

Note that E [Wyd] is the sum

ZZ dy!- d lsz[Bgll”'Bgﬂ’ (1.10)

where Y extends over the u tuples (d1, .. ., d,,) of positive integers satisfying dy +. . . +
d, = d,and 3" extends over the u tuples (p1, ..., p,) of distinct primes not exceeding
y. Since B, assumes only the values 0 and 1, from the independence of the B, and the
fact that the p; are distinct, it follows that the summand in 1.10 is

1
EIB, ---B, | = —— 1.11
[ p1 pu] pl .. pu ( )
By definition, E,, [wg] 16 is just 1.10 with the summand replaced by E,, [(5311 e 653] . Since
dp(m) assumes only the values 0 and 1, given that the p; are distinct, it follows that this

1|, here means

Eo[fl=n""Y " f(m),

m=1

d
and we assume that E {(%) } is calculated in this way.
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summand is

1 n
En [85: - 6p] = = Ln > -puJ (1.12)

But 1.11 and 1.12 differ by at most 1/n, and hence E [Wzﬂ and E, [wg] differ by at most
the sum 1.10 with the summand replaced by 1/n. Therefore,

’E[Wzﬂ—]E [ ”gl 31 g% (1.13)
P<y
Now p
E [(Wy - Ny)d} = jz(:) (j)E [Wj] (— ,uy) jv

and E, {(wy — ,uy)d} has the analogous expansion. Comparing the two expansions term

for term and applying 1.13 shows that

d

£ [0, — )] ~ B [(ay — )] < Z()y W = L)

Since y1,, <y, and since y®/n — 0 by the assumption y = n°) one has

() o[

as desired. ]

E —E

Conclude.

Proof. We first want to show that

w(k) — loglogn
Vl1oglogn n—00

is unaffected if the range of p is further restricted with w,(m).

N(0,1)

Proof. By Mertens’ second theorem, one has the estimate that

1
Wy = Z — =loglogy + O(1)
péyp

This satisfies (for example let logy = logn/loglogn) that y — oo slowly enough that
log y/logn — 0 but fast enough that

1
Z = = o(loglogn)'/? (1.14)

y<p<n


https://en.wikipedia.org/wiki/Mertens%27_theorems
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Now, let P, be the probability measure that places mass 1/n at each of 1,2,..., n. Re-
call that ¢, is defined as 1 or 0 according as the prime p divides m or not. Note that if
P1, - .., py are distinct primes, then Vi, p; | m iff [, p; | m, so that one has

P, [m : 6, (m) = 1,Vi € [1,u]] = % h_Lng

In particular when u = 1,

Z(Sp]z Z ]P)n[m:(sp(m):l]g Z 1

P>y y<p<n y<p<n p

En

By 1.14 and Markov’s inequality,
P, [m : lw(m) — wy(m)| > e(log log n)l/ﬂ —0

Therefore the desired result is unaffected if w, (m) is substituted for w(m). O

Now compare w,(m) with the corresponding sum W, = >
ance of \S,, are

<y B,,. The mean and vari-

1, 1 1
w=Y 1 d=21(1-3).
P<y Py

and each is log log n + o(log log n)'/? by 1.14. Thus, it suffices to show that

P, [m : m < az] — 1/ e 2y,
Oy V2T J o

Since the B,, are bounded, following part 9c, it suffices to show the moments converge to
N (0,1). Note that B, should be replaced by B, —p~" to center it. Thus the d-th moment
of (W, — ) /o, converges to that of A (0, 1). However, it is already proved in part 9d

that, as n — o0, one has
d
Wy — 1y 0
Oy n— 00 ’

E —E

()

so we are done. O

4 Dependent Random Variables

4.1 Conditioning, Radon-Nikodym Theorem

1. Let X and Y be independent Gaussian random variables with null expectation and variance

1. Show that X\;%Y and X\EY are also independent ¥ (0, 1).
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Then, one has

P(|Spt1l =y + 1] [Sul =y,..., |51 =w1)
1 1 1
:§]P’(Sn+1:y+1]Sn:y)+§IP’(Sn+1:—y—l\S :_y)zi

and similar for |S,+1| = y — 1 by symmetry.

Transition matrix:
1 .
P:= (Py), Piiq= §7Vl >0, Pi=1

and zero elsewhere.

2. Consider a Markov chain X with state space {0,1,...,n} and transition matrix

1
0<k<n-1, 77(0,n)=2—n
1

mk,k—1)=1,1<k<n-—1, 7T<TL,TL)Z7T(TL,TL—1)=§.

71'(0, k) = W,

(a) Prove that the chain has a unique invariant probability measure p and calculate it.
Proof. Let I = {0,1,...,n}. Denote u := u(k),k € I. It suffices to solve the system
Do HiTij = g, Vi€

po + p1 4 oo+ pp =1
/’607"'7/147120

After calculation, the system has only one solution that

1

1
/L:(/*L()’?,un) ukzﬁvkeﬂoan_lﬂv /’Ln:27n

(b) Prove that for any 0 < zo < n — 1, 70t (zq,.) = p.
Proof. We prove by induction and use the Chapman-Kolmogorov Equation. For o = 0,

71 (2, -) is by definition

1
(0, k) = 0<k<n-1, W(O,n)zQ—n

9k+1
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which corresponds with p. Note that

7713 Zﬂlkmq—ﬂm wi, Vi € I 7T2] Zﬂ2kﬂkj—771j
.. assume T g ; = 1,Vj € I, and note that
n—
Zﬂ kﬂkj:...:mj’
= Zﬂ'(n:l),kﬂ'kj = mukmk; = To; = g, Vi € T
k k
Therefore, by induction, one has for any 0 < 2z <n — 1, 7r<x0+1)(x0, ) = u. L]

(c) Prove that for any 0 < zg < n, ﬂ(n)(l’o, D) = p.

Proof. When 0 < 29 < n —1, Wg(cz) = 7(0,-) = p since p is invariant, which implies

When zg = n, one has

(n)

7T:ro(] -

1
P(n — n — 1 at first step) = 2
W;O)1:P(H—>n—>n—1—> —1)=

Inductively, one has Wg(c )k = 2&% for0 <k <n—1,and mpy'n = 2%

w as well.

(d) Foranyt > 1, calculate

I
= v n,r
52|

and plot ¢ — d(t).
(t)

Solution. Note when ¢t > n, one has 7, = ji,, since we have proved W(n)n .

(n)

. Hence, 7(™ (n, -)

Ol

- ;L(.I) )

= g, and

for any more steps, the distribution stays invariant. Hence, when ¢ > n, d(t) = 0. When

t < n, since n can at most go to n — ¢, one has

0
(tk —
nk — 1/2k n— t)—l—l7

nn =1/2¢

k<n-—t
n—t<k<n-1
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Then, one has

-3 s (o) 1)

and, noting that 7T7(~Lt)x —pg >0ask+1—(n—t)<k+1,

0=3( e 2 )
=;(1— Z pa 41— Z m)

r=n—t r=n—t

1 Z e

1.4+

1.2 ¢

0.8

067 {7.0.5)
0.4 |

0.2 |

—-0.2 |

—0.4 +

O]

3. For fixed p, g € [0, 1], consider a Markov chain X with two states {1, 2}, with transition matrix

T = (7(i,j)h<ij<e = ( I )

qg 1l—gq
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5. Let X be a real-valued Markov process with transition semigroup (@)~ let f : R — [0, 1]
be measurable, and let ¢y > 0. Prove that the process M; = Qy,—+f (X;) is a martingale for
tc [0, to].

Proof. We show M, is a P* martingale where X = (X}, P*). By assumption, M, is integrable
and F;-adapted. It suffices to show E[M;|Fs] = Mg for 0 < s < t < ty. Note that, by
definition [Gal16, Def. 6.2], My = Qi —sf(Xs) = E[f(Xy,)|Fs] while My = E[f(Xy,)|F)-

Since Fs C JF, by iterated conditioning law, one has
E[M|Fs] = E [E[f (X)) | Ft][Fs] = E[f (X¢,)| Fs] = Mss
as desired. ]

10 Stochastic Differential Equations

1. Inthis exercise we will prove weak existence and weak uniqueness of solutions of the stochastic
differential equation
E(O’, b) : dXt =0 (Xt) th + b (Xt) dt (25)

where 0,b : R — R are bounded and continuous such that [, [b(z)|dz < oo and o > ¢ for
some € > 0. We will also argue pathwise uniqueness if ¢ is Lipschitz.

(a) First we study the case b = 0. Suppose that X solves equation 2.5, and for each ¢ > 0
define

t
At:/a(XS)st, 7 =1inf{s > 0: A; > t}
0

Justify the equalities

t o d s d
Tt:/r2, At:inf{SEO:/U>t}
0 U(XTT) 0 U(XTT)

Proof. When b = 0, X; = fot o(Xs)dWs, is continuous. Then o(X;) is continuous, so
A, is continuously differentiable, and o (X;) > € so Ay is strictly increasing. So 7; is the
inverse of A; and

-1

d d b

—71 = | — A, =o(X, —2 = ———dr,
dtTt (ds Tt> 704 -7 /0 o(Ar)? '

Then 7, is increasing, so that

todr
=1 >0:
A mf{s_O /0 (X )2 >t}

as desired. O
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(b)

(©
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In the setting of (a), argue that there is a Brownian motion (B;),~ started from x such

that, a.s. for every ¢t > 0, X;; = mf{s>0 [ o(By)2dr>t}-
0 T

Proof. By part (a), for b = 0, X is a continuous local martingale, (X); = A; strictly
increasing, and (X),, = 00, then by [Bas11, Thm. 12.2], B; := X, defines a Brownian
motion starting at  and

X = B<X>t = Binf{sZO:f(f o(Xrp)"2dr>ty — Bmf{s>0 g o(Br)~2dr>t}
as desired. O
Show that weak existence and weak uniqueness hold for E(c, 0).

Proof. (Weak existence). Let B be a Brownian motion starting at z. Define
Y = / Tl dB
t - 0 O'(BS) S
and let 7; and A; be s.t.

¢
1

= (V)= | ———ds, Ay=inf{s>0:7, >t}

7= (Y ) /00(33)2 s, Ay:=inf{s>0:75 >t}

then since (Y)o = 00 a.s., then by [Bas11, Thm. 12.2], W; := Y}, defines a Brownian
motion starting at x, and

n—1
ZU Bay ) Ya,ginym — Yikyn) —>/ (Ba,)dYa,,
k=1

so that

t t Ay
/ (B )W, = / o(Ba)dYa, = / o (B.)dY,
0 0 0

t t
/ o(By)dY, :/ dB, = By,
0 0

so that we can let X; := Ba, = Bj,s(s>0. JS o (By)~2dr>t}- Then, X¢ = z and

t t
Xt:BAt:/ a(BAS)dWS:/ o(Xs)dW,
0 0

(Weak uniqueness). We've shown that Xy = By ¢r,>0. I o(B)-2dr>t}- Since X is con-
tinuous and the finite dimensional distribution is determmed by a Brownian motion, the
law of X is unique. O

Also,
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(d)

(f)

Show that there exists a monotone increasing and twice continuously differentiable func-
tion F' : R — R such that F' (X) is a martingale. Give an explicit formula for F' in terms
of o and b.

Proof. Suppose F' € C2%(R). By Ito’s formula, one has
t 1 t
F(X,) = F(Xo) + / F/(X)dX,+ / FI(X)d(X),s
0 0
t t 1 [t
:/ F’(Xs)o(Xs)dWSJr/ F’(Xs)b(Xs)dt+2/ F'(X,)o(X;)?dt,
0 0 0

so F'(X) is a martingale iff the d¢ term F'(X;)b(X;) + £ F"(X¢)o(X¢)? = 0, implying

that
F'(z) = exp (— /0 ' i?i‘;;&;)  P@) = /0 " exp <— /O t jlzggc@ dt,

Note that F’ > 0, so F' is monotone increasing as desired. O

Show that Y; = F (X;) solves an SDE of the form dY; = ¢’ (Y;) dW; and determine the
function o”.

Proof. By part (d), one has dY; = dF(X;) = F/(X;)o(X;)dW,. Note that F'(z) >
exp(—2e 2 [ |b(t)|dt), so F : R — R is bijective, and hence F'~! exists. Then, one has
E'(¢'): dY,=dF(Xy) = F'(F7'(Yy)o(F~1(Yy))dWy = o’ (Y;)dW,
where o/ = (F' - o) o F~L. O

Using parts (a)-(c), show that weak existence and weak uniqueness hold for E(o, b), along
with pathwise uniqueness if o is Lipschitz.

Proof. First note that by part (c) along with the fact that o/ : R — R is continuous
and that 0’ > eexp(—2¢ 2 [ |b(t)|dt), weak existence and weak uniqueness hold for
E' (o).

Weak existence of £(o,b): fixx € R. Set y = F(x). There exists a solution Y of £}, (0”).
Define X; := F~!(Y;). By Ito’s formula, we get

tdF—l 1 tdQF—l
X, = Y)dY, + = [ S (V) d(Y,Y)..
= [ S5 [ ) awy)

By F~1(F(z)) = x, we get

dF~! dF d*F-! dF, \* dF! d*F
G )@ =1 @) (@) + () ) =0
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Thus,
dF~! dF—1 X 20 g dPF 2b(Xs) 2 X 20} gr
}/:S = F XS = e 0 0(7")2 , - Y:S — 756 0 o(r)?

Xt 2b(r)

Since dY; = o' (V) dW,; = e 70 ()2 o (Xt) dWy, one has

tdF—l 1 tdQF—l
Xt = Yo)dYs+ 5 | — 5 (Ys)d(Y,Y)s
= [ St g [ )

t t
:a:+/ O'(XS)dWS-i-/ b(Xs)ds
0 0
and so X is a solution of F, (o, b). Weak uniqueness of X immediately follows from weak
uniqueness of Y.

Pathwise uniqueness of E(o, b): given o is Lipschitz, it suffices to show that ¢’ is Lipshitz.

Indeed, let ¢cg > 0 be such that |o(z1) — o(x2)| < colx1 — w2, also let

c1 :=sup|F"|, co:= sup\F_ll, c3:=sup|F’'|, c4:=sup|o|
R R R R

which are all bounded, so that
0" (1) — o’ (y2)| = |(F'(F~ " (g1)o (F~ (1)) — (F'(F ' (y2))o (F~ " (2))]
< (c1eq +coc3) - ca - |y1 — 2|

is bounded, so ¢’ is Lipschitz. O

2. Let W be a Brownian motion and let @ > 1/2 and zp > 0. This exercise proves that there is a
unique positive semimartingale Z such that for every ¢ > 0,

t
Zi = 20+ Wi + / 2 s (2.6)
0 ZS

This process is known as a Bessel process.

(a) For n € N define f,, : R — R by f,(z) = |z|~! A n. Justify the existence of a unique
semimartingale Z" that solves

t
Z[L:zo+Wt+a/ fn(Z2)ds
0
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where either limit goes to 0. Hence,

u(z) = E; [g(Br)] = Bz [9 (Buy) Ly, <vp}) =0, Vo € By
but then, u(z) — 0 # ¢(0) = 1 as z — 0,z € Bj}. Contradiction! O

6. [Gal16, Exercise 7.26] In this exercise, d > 3. Let K be a compact subset of the open unit ball
of R%, and Tk := inf {t > 0: B; € K}. We assume that D := R%\ K is connected. We also
consider a function g defined and continuous on K. The goal of the exercise is to determine
all functions « : D — R that satisfy:

(P) wu is bounded and continuous on D, harmonic on D, and u(y) = g(y) ify € dD.

(This is the Dirichlet problem in D, but in contrast with [Gal16, Sec. 7.3] above, D is unbounded
here.) We fix an increasing sequence (Rn)n21 of reals, with Ry > 1 and R,, 1 co asn — oo.
For every n > 1, we set T(,) :=inf {t > 0: |By| > R, }.

(a) Suppose that u satisfies (P). Prove that, for every n > 1 and every z € D such that
|z| < Ry,

u(z) = By [9 (Bry) H{TKgT(n>}] + E; [U(BTm))]l{T(n)gTK}]

Proof. Note that z € D = R\ K but |x| < R,, so the bounded domain is in fact
B(0,R,)\K. Let T = inf{t > 0 : By ¢ Bgr,\K}. By [Gall6, Prop. 7.7], one has
for every x € Bpr, \ K, as it either exits first to > R,, or to € K,

u(z) = E[g(Br)] = Eq [9 (Bry) Il{TKgT(n)}} + E; [U (BT(")) ]l{Tw)gTK}}

as desired. O

(b) Show that, by replacing the sequence (R,,),,~, with a subsequence if necessary, we may
assume that there exists a constant o € R such that, for every z € D,

lim E, [u(BT(n))} =«

n—oo
and that we then have

lim u(x) =«
|z]—o0

Proof. We try to apply Liouville’s theorem [Eva98, Thm. 2.8] which requires the function
defined on all of R™. Let

folw) =By [u(Br,))] veeBa, n>1
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Note that u is bounded, so is f,, and by [Gall6, Prop. 7.7.ii], f, is harmonic (applying
strong Markov property). It now suffices to find an increasing (sub)sequence s.t. the limit
of f,, converges uniformly on every compact subset &' C R? for every = € R%.

We want to show that { f,,} is equicontinuous on B(p, r) for every p € Q¢ and r € Q.
Since then, by applying Arzela-Ascoli theorem, there exists an increasing subsequence
ny such that f,,, () converges uniformly on B(p, r), and we’re done.

Indeed, let p € Q%7 € Q4 and M := sup,.p |u(z)|. Choose N > 1 such that B(p,r) C
Br, and n := d(B(p,r),0Br,) > 0. By local estimates for harmonic function, there
exists some ¢ > 0 such that for n > N one has

c cM
|dfn ()| < /2 1l L1 Bam/2)) < /2 Vo € B(p,r +n/2)

Let z,y € B(p, r) such that |z — y| < 524 ¢ for some € > 0. Then

[fa(®) = fu(y)| < sup  |dfu(2)|lz —y[ <e
z€B(p,r+n/2)

Hence, by letting the subsequence ny, start at N and setting f(x) := limy_,o0 fn, (), one
has f(z) = lim,, o0 E, [U(BT(H) )} = « a constant by Liouville’s theorem.

Now, note that M is finite, and one can always pick some n; large enough such that
Py(T(n;) > Tk) < € forany e > 0, so that

|x]—o00

—0

lu(z) —a| <ecj-e
for some constant ¢y, as desired. O

(c) Show that, for every x € D,

u(z) = By [g (Bry) Lz <oo}] + Py (T = 00)

|z|—o00

Proof. Note that lim;_,, | B;| = 0o [Gal16, Thm. 7.17], but we have shown that u(x)
a, so Tp,, < oo as. for every k > 1. Therefore, one has

Ee |u(Br, ) Lz, <}
=B, [u(Br., ) Ur,, <n<oe} | + o [#(B1,) 1r,, <ocjririemse)

]H—OO>0+()(PI(TK:OO)
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By parts (a) and (b), one has

u(@) = lim By [g(Bri) Lpe, 3] + lim B [u(Br, ) 1y, on]

k—o0

= E:E [g (BTK> H{TK<OO}:| -+ CV]Px (TK = OO)

as desired. OJ

(d) Assume that D satisfies the exterior cone condition at every y € dD (this is defined in
the same way as when D is bounded). Show that, for any choice of o € R, the formula
of part (c) gives a solution of the problem (P).

Proof. By [Gal16, Prop. 7.7.ii], u(z) is harmonic. Now it suffices to show that

xelggyU(w) =g(y)

for every y € 0D. Since then, by [Gal16, Thm. 7.8] we’re done. Note that in the theorem
D bounded is only required for finite hitting time, so it does not affect its validity here.

Denote M := sup,cx |g(2)|. Fix e > 0 and y € 9D. Choose ¢ > 0 such that
9(2) = g(y)l <€ Vze KN B(y,0)
Choose 17 > 0 such that
)
Po [sup|Bi| > - ) <e
t<n 2
Observe that
lim P, (Tx >n)=0
reED—y
(This proof is the same as the proof of lemma 7.9) and so there exists ¢’ > 0 such that

P, (Tx >n) <e YzeDNB(y,d)

Letz € DB (y,8' A $). Then

) )
P, |sup By —x[ > 5 | =Pg [sup|By| > ~ | <e
t<n 2 t<n 2
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and so
lu(x) — g(y)| <Eq [lg (Bry) — 9W)| Lire<iy) +
Eq (|9 (Bry) = 9| 1<ty <ooy] + (9(y) + )Py (Tx = 00)
<Ex (19 (Brie) = 90| 1< oupee, 151 ei<5} | +

J
2MP, (sup |B; — x| > ) +
t<n 2

E; [lg (Bry) = 9| Ln<tic <o0}) + (9(y) + )Py (Tie = 00)
<e+2Me+2MP, (n < Tk < o0) + (9(y) + )P (T = o)
<e+2Me+ (B3M + )P, (T >n) < e+2Me+ (3M + a)e

(e) Show that, for every z € D,

u(r) = Ep [9 (BTK) I[{TK<c><>}} + alP, (T = o0)

Proof. Note that lim;_,, |B;| = oo [Gall6, Thm. 7.17], but we have shown in (b) that

%
u(z) Jrlzee, a, so T, < oo a.s. for every k > 1. Then, passing to the limit, one has

Ee |u(Br, ) Lz, <}

=Bx [0 (B, ) U, crecn)] + e [0 (B1,) U, coc)oire=se)]

2% 0+ aP, (Tk = o)

By parts (a) and (b), one has

u(x) = kli_)nolo E, [g (Bry) :H-{TKSTnk}i| + lim E, [u (BTnk) :[l{Tnk STK}]

k—oo
=E. [g (Bry) IL{TK<OO}] + alP, (T = o0)
as desired. O

(f) Assume that D satisfies the exterior cone condition at every y € dD (this is defined in
the same way as when D is bounded). Show that, for any choice of o € R, the formula
of part (c) gives a solution of the problem (P).

Proof. By [Gall6, Prop. 7.7.ii], as the entire function inside the expectation is bounded
measurable, u(x) is harmonic. Now it suffices to show that

melggyu(fﬁ) =g(y)
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for every y € 0D. Since then, by [Gal16, Thm. 7.8] we’re done. Note that in the theorem
D bounded is only required for finite hitting time, so it actually does not affect its validity
here.

The remaining follows similarly [Gal16, Thm. 7.8]. Let M be such that |g(z)| < M for
every z € K. Let € > 0. Choose 6 > 0 such that [g(2) — g(y)| < €,Vz € K N B(y,J),
and choose 1) > 0 such that Py (sup;<, | B:| > 6/2) < e. By [Gall16, Lemma 7.9], one has
limyep—yy Py (T > 1) = 0, so there exists §; > 0 such that

P, (Tx >n) <e, VYreDNB(y, 1)
Letx € DN B(y,d1 Ad/2). Then

S R
t<n 2 t=n ’

so that

— 9W)| Lz <ny]

— 9| 1{TK§n}l{suptgy,lBtfo%}} +

—9(

(
(
(Bry) — 9(y)| ]l{TKSU}]l{suptgn|Bt_$|2g}:|
(

2MP, (sup<, |B; — x| > 6/2)
<e+2Me

Hence, one has

lu(x) = g(y)| <Eq [lg (Bry) — 9W)| Lire<ny] +
E: [lg (Bry) — 9| i<ty <oc}] + (9(y) + )Py (Tx = o0)
<e+2Me+2MP, (n < Tx < o0) + (9(y) + )P (Tx = 00)
<e+2Me+ (3M + )P, (Tx > 1)

<e+2M6+(3M—i—a)e€¢—0>O

as desired. O

12 Convergence of Probability Measures

Remark. For the following, you're allowed to use that if (E, d) is a separable metric space then the
following defines a metric on the set of probability measures on E:

dp(P,Q) =inf{e > 0: P(F) < Q(F:) + € forall F closed}
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