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Introduction

To begin with1, we want to minimize a closed2, proper3, convex, and possibly
non-smooth function f , where the gradient descent does not apply.
In class we have seen the subgradient method. There is another way considering the
proximal operator

proxf (v) := argmin
x

(
f (x) +

1

2
∥x − v∥2

)
proxλf (v) := argmin

x

(
f (x) +

1

2λ
∥x − v∥2

)
called the proximal point method.

1In fact, f can be nonconvex in many cases, and weakly convex is sufficient.
2The epigraph of f is a closed set (and iff f is lower semicontinuous)
3f : X → R where R := R ∪ {+∞}; in other words, f never attains the value −∞ and its effective

domain is nonempty
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Setup

Given an iterate xt , the method defines xt+1 to be any minimizer of the proximal
subproblem

argmin
x

(
f (x) +

1

2λ
∥x − xt∥2

)
for an appropriately chosen parameter λ > 0. That is,

choose xt+1 ∈ proxλf (xt)

The addition of the quadratic penalty term 1
2λ∥x − v∥2 often regularizes the

subproblems and makes them well-conditioned. It can have larger strong convexity
parameter thereby guaranteeing a unique solution for each subproblem regardless of
the smoothness of f , facilitating faster numerical methods. ([Dru17])
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Convergence Proof

By definition, consider

xk+1 = proxf (xk) = argmin
u

(
f (u) +

1

2
∥u− xk∥22

)
From the subgradient first-order optimality condition:

0 ∈ ∂f (xk+1) + xk+1 − xk =⇒ −(xk+1 − xk) ∈ ∂f (xk+1)

Since we assume for simplicity that f is convex:

f (z) ≥ f (xk+1) + q⊤(z− xk+1), ∀q ∈ ∂f (xk+1)

=⇒ f (z) ≥ f (xk+1)− (xk+1 − xk)
⊤(z− xk+1)

=⇒ f (xk+1) ≤ f (z) + (xk+1 − xk)
⊤(z− xk+1)

= f (z)− (xk − xk+1)
⊤(z− xk+1)
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Convergence proof, conti.

Choosing z = x∗, where x∗ is the optimal point:

f (xk+1)− f ∗ ≤ − (xk − xk+1)
⊤ (x∗ − xk+1)

≤ − (xk − xk+1)
⊤ (x∗ − xk+1) +

1

2
∥xk − xk+1∥22

=
1

2

(
∥xk − xk+1 − (x∗ − xk+1)∥22 − ∥x∗ − xk+1∥22

)
=

1

2

(
∥xk − x∗∥22 − ∥x∗ − xk+1∥22

)
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Convergence proof, concl.

Summing from k = 0 to k:

k∑
i=0

(f (xi )− f ∗) ≤ 1

2
(∥x0 − x∗∥22 − ∥x∗ − xk+1∥22) ≤

1

2
∥x0 − x∗∥22

Since f (xk) is non-increasing:

k∑
i=0

(f (xk)− f ∗) ≤
k∑

i=0

(f (xi )− f ∗) ≤ 1

2
∥x0 − x∗∥22

Therefore, we have:

f (xk)− f ∗ ≤ 1

2k
∥x0 − x∗∥22

This result shows that the function values converge at a rate proportional to 1/k .
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A simple example

Suppose we have f (x) = |x | and we want to find minx f (x).
Let x0 = −3 and suppose λ = 1.
Then

proxf (x0) = f (x) +
1

2λ
∥x0 − x∥2 = |x |+ (x0 − x)2

2

=⇒ x1 = argmin
x

proxf (x0) = −2,

and we have f (x1) = 2. Repeatedly, we have x2 = −1, and so on...
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A simple example, cont.
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Issues

▶ The subproblem still requires invoking an iterative solver.

▶ In general, if f is already difficult to minimize, adding a quadratic makes it even
more difficult to minimize. Only in some special cases, solving the prox is easier
than minimizing f directly.

▶ Therefore historically it has not found many applications until recently.
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Contemporary applications

In the past few years, this viewpoint has undergone a major revision. In a variety of
circumstances, the proximal point method with a judicious choice of the control
parameter λ and an appropriate iterative method for the subproblems can lead to
practical and theoretically sound numerical methods. ([Dru17])

▶ Applications are needed: including machine learning / signal processing ([DG18]),
portfolio optimization ([SLLC23]), etc.

▶ Improvements are given: for example, [LMH15] introduces a “catalyst” approach
that solves a sequence of well-chosen auxiliary problems that incorporate a
quadratic regularization term.

Now we take a closer look at the proximally guided subgradient method [DG18].
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Stochastic approximation

Consider the problem of minimizing the expectation:4

minF (x) = Eζ∼Pf (x , ζ).

Here, ζ is a random variable following an fixed but unknown distribution P,
x ∈ X ⊂ Rd is closed and convex, f is a known loss function, and the only access to F
is by sampling ζ.
When the problem is convex, the stochastic subgradient method has strong theoretical
guarantees and is often the method of choice.
The problem is well-studied (rates of convergence are given) when f (·, ζ) is convex
using stochastic (sub)gradient:

Sample zt ∼ P
Set xt+1 = xt − αt∇x f (xt , zt)

4For simplicity of the exposition, the minimization problem is unconstrained. Simple constraints can
be accommodated using a projection operation.
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The proximally guided subgradient method

Now suppose f is nonsmooth and nonconvex. [DG18] shows how to use the proximal
point method to guide the subgradient iterates in this broader setting, with rigorous
guarantees.
Assume that the function x 7→ f (x , ζ) is ρ-weakly convex5 and L-Lipschitz for each ζ.
[DG18] proposed the scheme outlined in the following algorithm (PGSG)6:

Data: x0 ∈ Rd , {jt} ⊂ N, {αj} ⊂ R0

for t = 0, . . . ,T do
Set y0 = xt
for j = 0, . . . , jt − 2 do

Sample ζ and choose

vj ∈ ∂
(
f (·, ζ) + ρ ∥· − xt∥2

)
(yj)

yj+1 = yj − αjvj
end for
xt+1 =

1
jt

∑jt−1
j=0 yj

end for

5Here ρ can be understood as 1/λ in the previous notion.
6Here is a Python implementation by the authors.
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https://github.com/COR-OPT/PGSG/blob/master/Interactive-PGSG.ipynb


The rate of convergence of PGSG

The method proceeds by applying a proximal point method with each subproblem
approximately solved by a stochastic subgradient method.
It is proved that, by setting jt = t + ⌈648 log(648)⌉ and αj =

2
ρ(j+49) in the PGSG

algorithm, the scheme will generate an iterate x satisfying E[∥∇F (x)∥2] ≤ ε after at
most

O

(
ρ2 (F (x0)− inf F )2

ε2
+

L4 log4
(
ε−1
)

ε2

)
subgradient evaluations. This rate agrees with analogous guarantees for stochastic
gradient methods for smooth nonconvex functions.
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