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Disclaimer:

These are the problem sets for the course Convex and Nonsmooth Optimization, given by Dr.
Michael L. Overton, Silver Professor of Computer Science and Mathematics, at New York Uni-
versity in Spring 2024.

Convex optimization problems have many important properties, including a powerful duality the-
ory and the property that any local minimum is also a global minimum. Nonsmooth optimization
refers to minimization of functions that are not necessarily convex, usually locally Lipschitz, and
typically not differentiable at their minimizers. Topics in convex optimization that will be covered
include duality, linear and semidefinite programming, CVX (“disciplined convex programming”),
gradient and Newton methods, Nesterov’s lower complexity bound and optimal gradient method,
the alternating direction method of multipliers, the nuclear norm and matrix completion, primal-
dual interior-point methods for linear and semidefinite programs. Topics in nonsmooth optimiza-
tion that will be covered include subgradients and subdifferentials, Clarke regularity, and algo-
rithms, including gradient sampling, BFGS and the stochastic gradient method, for nonsmooth,
nonconvex optimization. The text is [BV04]. Other references include [Nes18].

The solutions are mostly given by Rex Liu with help from Tao Li, Yizheng (Thomas) Li, Letao
(Jenna) Chen, and Zhen (Bobby) Bao. If you see any mistakes or think that the presentation is
unclear and could be improved, please send an email to: cl5682@nyu.edu. All comments and
suggestions are appreciated.


https://www.linkedin.com/in/rexliu9/
https://math.nyu.edu/dynamic/
https://cs.nyu.edu/~overton/
mailto:

Notations:
« S : the set of symmetric positive semidefinite n X n matrices.
« S% ,: the set of symmetric positive definite n x n matrices.

K*: the dual cone of the cone K.

e = = y,y =X x: componentwise inequality between vectors x and y.
« 1: vector with all components one.
« diag(z): diagonal matrix with diagonal entries z1, ..., zy.

Conv(C): the convex hull of a set C.
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1.2 Convex functions 13

cvx_end

4 Generate the figure
figure;
x = linspace(-10, 10); 7 Adjust this range as needed
theta = 0:pi/100:2%pi;
hold on
for k = 1:colsA
if A(2, k) "= 0
plot(x, -x*A(l, k)./A(2, k) + b(k)./A(2, k), 'b-');
else
y_line = b(k) / A(1, k); / For horizontal lines
plot([min(x), max(x)], [y_line, y_line], 'b-');
end
end
plot(x_c(1l) + r*xcos(theta), x_c(2) + rxsin(theta), 'r');
plot(x_c(1), x_c(2), 'k+');
xlabel('x_1");
ylabel('x_2');
title('Largest Euclidean ball lying in a 2D polyhedron');
axis equal;
hold off
end

Figure 1 shows the example on the webpage (left) as well as another example with more in-

equalities (right). O

Largest Euclidean ball lying in a 2D polyhedron Largest Euclidean ball lying in a 2D polyhedron

Figure 1: Largest Euclidean ball lying in a 2D polyhedron

7. What happens if you choose A and b so there is no point inside the polyhedron?

Proof. It will be an infeasible region (an empty polyhedron). In MATLAB when running such
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title(['Largest ball in ' num2str(p) '-norm']);
end

Here are the plots (Figure 2) for p = 1, 1.5, 0o, respectively. O

Largest ball in 1-nomm lying ina 2D polyhedron Largest ballin 1.6-nom lying in .20 polyhedron Largest balln Inf-norm Iying in @ 20 polyhedron

Figure 2: Largest p-norm ball

9. Explain why your answer to the previous question does not extend to work for p < 1, for
which MATLAB’s norm(x,p) is still well defined? What goes wrong if you try it anyway?

Solution. It is because when p < 1 it does not satisfy the triangle inequality, thus not a norm
by definition. If we try it anyway, it does not fit as the correct “largest ball” O

10. Is there a simple way to change the code so that it will actually still give the right answer
when p < 1? Justify your answer and run and show the output for an example.

Solution. A simple way is to change the eighth line of code p==1 into p<=1. The reason is that
the convex polyhedron cannot intersect the concave regions of a non-convex ball. An example
is given in Figure 3 for p = 1/2. O

Largest ball in 0.5-norm lying in a 2D polyhedron

Figure 3: Largest ball forp < 1
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Solution. Note that x > 0 <= —xz < 0. By definition, the Lagrangian is
L(z,\) =€ — Xz
The Lagrange dual is obtained by minimizing the Lagrangian over z, for a given \:

g(A\) = inf L(z, \) = inf (e” — A\x)

>0 x>0

Taking the derivative while checking the valid domain of A, one gets

g()\):{—oo A<0

A—An(\) A>0

The plot is sketched above. O

(b) Solve the Lagrange dual problem by maximizing g(A) over A > 0. Does strong duality
hold?

Proof. The dual problem is to

maximize A — Aln(\)
subjectto A >0

By taking the derivative of g(\), we see that sup g(\) is reached at g(1) = 1. The dual
problem has an optimal value d* = 1. Since p* = d*, strong duality holds. O

3. Consider the optimization problem

minimize 22+ 1
subjectto (x —2)(x —4) <0

with variable z € R.
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(@)

(b)

Give the feasible set, the optimal value, and the optimal solution.

Solution. Solving (z — 2)(x — 4) < 0 yields x € [2,4], which is the feasible set. Since
22 + 1 is monotonically increasing in the feasible set, the optimal value is reached at
r* =2 withp* =22 +1=75. O

Plot the objective 22 + 1 versus . On the same plot, show the feasible set, optimal point
and value, and plot the Lagrangian L(x, \) versus x for a few positive values of \. Verify
the lower bound property (p* > inf, L(z, A) for A > 0). Derive and sketch the Lagrange
dual function g.

Solution. By definition, the Lagrangian is
L(z,\) = (1 + X)z? — 6z + (1 +8)\)

The plot of the objective 2 +1 as well as L(x, \), A = 1,2, 3 versus z is given as follows:

25 = ‘ :
— a2+ l l

90 || L1 |
— L(x,2) ; ;
L(z,3) : /

15 | |
| 72

= = :
’ (¥, pY) ;
0 1 2 3 4

The lower bound property is verified that the minimum value of L(x, \) over x is always
less than p*. Note that for A > 0, by the AM-GM inequality,

INZ =142 9
inf L(x,\) =14+8\— ——"="11-k——-<5=p"
in (x, ) +38 T k:_5 D
where equiality is reached at k = 3, i.e. A = 2.

Note that the above infimum is valid for A > —1, since fo, fi both have principal coeffi-
cient 1. For A\ < —1 it is unbounded below. Thus

1+8A— 25 A> -1
9(\) =
—00 A< —1
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The plot is sketched above. O

(c) State the dual problem, and verify that it is a concave maximization problem. Find the
dual optimal value and dual optimal solution A\*. Does strong duality hold?

Solution. The Lagrange dual problem is

9N2

maximize 1+ 8\ — TN

subjectto A >0

It is a concave maximization problem as we have checked that the infimum is reached at
A = 2 and g(\) is decreasing either when \ goes down to 0 or goes up to co. The dual
optimal value is reached at \* = 2 with d* = 5. The strong duality holds as d* = p*. [

4. A convex problem in which strong duality fails. Consider the optimization problem
minimize e™*
subjectto 22/y <0
with variables x and y, and domain D = {(z,y) | y > 0}.
(a) Verify that this is a convex optimization problem. Find the optimal value.

Solution. For e~%, note that (e~%)"” = e~z > 0 for all z, so fo(z) is convex. For 2%/,

note that the Hessian matrix ) )
E4 —2Z
Yy y?
y? y3

is positive semidefinite for y > 0 since its eigenvalues are A\; = 0 and Ay = 2(22+%2) /9>,
so f1(z,y) is convex. Therefore, it is indeed a convex optimization problem.

Note that 22 > 0 for all x but the domain restricts y > 0, and the inequality constraint
further restricts #2 < 0, implying that 2 can only be 0, so the optimal value p* = 1. [J
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Figure 7: Comparison of three gradient methods for example 1

decreases much slower than O(1/k) for t = 1/M when the number & of iterations is not large
enough. It is thus valid in the plot that gradient with step size 1/M converges faster.

For the second example, I chose M = 564 and m = 2, which were estimated in the previous
section. See Figure 8 for the result, which aligns with the theoretical guarantees.

- Function Values over Iterations.

Gradient Norms over Hterations

Function Value (log scale)

nnnnnnnn

Figure 8: Comparison of three gradient methods for example 2

For the last two examples, we first code matrix T (see [Nes18, p. 78, matrix A]) where its diagonal
has entries 2 while sub-diagonals have entries —1 in an efficient way:

T = 2xspeye(dim); 7 Main diagonal
T(2:dim+1l:end) = -1; 7 upper subdiagnoal
T(dim+1:dim+1:end) = -1; / lower subdiagnoal

Then we code the function the calculate f and V f:
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function [f, g] = badFunction(x, m, M, T, el)
4 Nesterove's worst case example
4 anput: m, M: mu and L in book; T: matriz 4 in book; el: e_1 in book

4 Calculate the quadratic form component of the function wvalue
quadraticForm = norm(x(l:end-1) - x(2:end))"2;

4 Incorporate the first element's squared value and adjustment
quadraticForm = x(1)~2 + quadraticForm - 2x*x(1);

/ Calculate f

f=(M-m /8 * quadraticForm + m / 2 * norm(x)"2;

4 Compute the gradient 'g'
g=WM-m) /4 *xT*x+m*x- (M-m) /4 % el;
end

See Figure 9 and 10, respectively, for the results. It is checked that mI < V2F =< MI by

Gradient Norms over Hterations.

Function Value (log scale)

Gradient Norm (log scale)

Figure 9: Comparison of three gradient methods for example 3
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Figure 10: Comparison of three gradient methods for example 4
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p\A[ 001 01 1
0.1 [ 8586 8298 7864

8519 7870 7054
10 | 8551 7927 4932

Table 1: Large problem numbers of nonzeros for different p and A combinations

spy (L) ;
title('Sparsity Pattern of Cholesky Factor L');

" :
0 x10 Sparsity Pattern of Matrix A - Sparsity Pattern of Cholesky Factor L

2000

3000

4000

Rows

5000

6000

7000

8000

9000

0 2000 4000 6000 8000 10000 10000 0 2000 4000 6000 8000 10000

Columns nz = 12379
Figure 11: Sparsity patterns of randomly generated matrices A and L, with p picked as 1
O

Then, inside the ADMM iteration you can solve the relevant systems with forward and back
substitution [BV04, Algorithm C.2, p.670], using the backslash operator \.

For both the small problem and the large problem:

« Experiment with A : does larger A result in solutions x which are more sparse, as it should?

+ Experiment with p : what effect does this have on the method?

Solution. Please see Figures 12 and 13 for the logplots. Sparsity of the small problem remains

unchanged with all same nz values, probably due to its small size. Sparsity of the large problem
has the following trend (for a random trial):

The reduction in nonzeros as A increases confirms that the regularization effectively promotes
sparsity in the solution. The effect of varying p on the sparsity of the solution is less pronounced
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Matrix Completion xt w Matrix

Matrix Completion Convergence for X3

CTee————

Figure 14: Logplots of Matrix Completion Convergence for X1, Xo, X3

Proof. We want to show that
X1 < 1X1p < IX] < VrIX e < 71X

for any matrix X of rank at most r, where o;’s are the singular values of X, which are all
Xllr = (T 02) %, [ X = 01(X), and | X[ = X0y 04(X).

The first inequality || X || < || X || is trivially true, since 0 < Y, o2. Then, since the singular
values are all positive, we have >, 07 < (3, i) so that | X |7 < ||X||+. By the AM-QM
inequality’, we also have (o1 +---+0,)/r < 1/ (>, 02) /r. Multiplying r on both sides yields
| X ||« < +/7||X||F. The last inequality /7| X||r < r||X]|| is again trivial, as it is equivalent

saying, by taking squares on both sides, that 07 + - - - 4+ 02 < 0% + - - - + 0%, which is true as
01 is the largest of all o;. O

positive,

3The arithmetic mean and quadratic mean inequality states that, for positive reals x;, we have

(Z?:l wi)Q < s a?

n - n

which can be proved by applying the Cauchy-Schwarz inequality on vectors x and 1.
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5. Consider the nuclear norm relaxation of the generalization of the matrix completion problem
stated on [RFP10, p. 480]. Show that the program written on the right side is indeed its dual.
Here, if A(X) = bmeans (Ag, X) = by, k = 1, ..., p, then A*(2) means the adjoint operation,
>k ZeAk.

Proof. The primal problem is:

1
minimize Q(tr(Wﬁ + tr(Ws))

. W X
—
subject to [XT WJ =0
AX)=b

Note that W and W5 are symmetric. The constraint A(X ) = b can be expanded to (A, X) =
by for k =1,...,p, where { A} } are given matrices forming the linear operator A.

Construct the Lagrangian L with dual variables Z (a symmetric matrix) for the semidefinite
constraint and z € RP (vector) for the linear constraints:

L(Wl, WQ, X, Z, Z)

= %(tr(Wl) + tr(Wa)) — tr (Z Bf% V)V(ZD + (2,0 — A(X))

- % e (Wi(I — 2711)) + %tr(Wg(I 97))
—tr(Z12X) —tr(Za X ) — tr(A*(2)X) + b 2

where Z = {ZH le}

Zo1 Lo

The dual function g(z, Z) is obtained by minimizing L with respect to Wy, Ws, and X:

Z)= inf L
9(2,2) wint

By taking the gradients of L with respect to W7, W5, X and setting them to zero, we get
I 2711 =0,1 279 =0,and Z15 + Zy, + A*(2) = 2712 + A*(2) = 0. Therefore we have

maximize bz

. 1r 1 gx(s
subject to [—%,j*(z)T 2 ;I( )} =0
which is equivalent to® the condition stated on [RFP10, p. 480]. -
®Note that
A= [XI/q ;:J = 0 isequivalentto B = [_I;T _]zj -0
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6. (a) Consider some extreme examples of the restricted isometry property (RIP) [RFP10, Defi-
nition 3.1]. Assume m = n = 2 and let rank r = 1.

i. Let A(X) = [x11, %12, 221]". Find a matrix X which proves that there is no ¢, < 1
that works, i.e., satisfies [RFP10, Eqn (3.2)], for all X.

0 0

Solution. Let X = [0 1

] . We have

Xl = /22 + a2 + 22, + 2% = V02 +02+02+12 =1

and

AN = [I[0,0,01] = v0? + 0% + 02 =0
Plugging in the RIP inequality [RFP10, Eqn (3.2)], we get §, > 1, implying that there
is no 9, < 1 that works, as desired. O

ii. Let A(X) = [x11, %12 + 21, 222 Complete the proof that §, = 1 — 1/v/2 works,
and find an example X that shows that no smaller 6§, works.

. r11 @ .
Proof. Given X = LH ;1;12}’ and since » = 1, X has the property z11x92 =
21 T22

12T21. Given

1XNr= \/ﬁl +aty + a3 + 23,

and

[AX) ]2 = \/33%1 + (12 + 721)2 + 9632

Note that (211 + 292)% + (712 + 221)? > 0 along with the fact that z1;799 = T1221
leads to | A(X)[3 > || X]||%/2. Also, (x11 — 292)? + (212 — x21)? > 0 leads to
IAOZ < 31X [1F/2.

Given the bounds, we aim for ¢, such that:
(1 =6, X[lr < [AX)]l2 < (1 +6,) [ X[
For the minimal 4, that fits these inequalities, we need:
(1= 6)IXIE < IXIF/2 and (1 +06,)IX|F > 3] X|F/2

Simplifying, we get 6, > 1 — 1/4/2 as desired.

as the quadratic forms

I, Y
qa(z,y) = [z" y'] {Yr ; } Lﬂ =z'z+a Yy+y Y o+y'y=qslz, -y

need to be non-negative for all (z,y) € R™"™.
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1 1
-1 -1
Plugging in the RIP inequality [RFP10, Eqn (3.2)], we get 6, > 1 — 1/+/2, implying
that there is no smaller ¢, that works, as desired. ]

}. We have || X||r = 2 and || A(X)|2 = V2.

For example, consider X = [

(b) Complete the proof of [RFP10, Lemma 3.4].

Proof. Let A, B € R"*™ be matrices of the same dimensions. We want to show that
there exist matrices B and By such that

i. B= DBy + B,
ii. rank B; < 2rank A,
iii. AB; =0and A" By =0,
iv. (B1,Bg) = 0.
Consider a full singular value decomposition of A,

= 0]t
A_U[O O}V

where Y € R™", and let B := U ' BV. Partition B as

~ B 13’12]
B =1 ~
[321 Bas

where B, € R™%". Define now

B Bl 0 0 T
B = U A V B = U A V )
! [321 0 } b2 [0 Bos

and we check that By and B> satisfy the above conditions. Indeed, i, ii, iv are trivially
true: B=UBV " = By + By, and since U U = VTV = I we have

+ [z olfo 0o, o o],

and similarly AT By = 0. Lastly, (B, B) = tr(B] Bz) = tr(0) = 0.

We now show that rank B; < 2rank A = 2r. Indeed, we have rank(éll) < r and
rank(Ba1) < min(m — r,7) < r,rank(Bj2) < min(r,n — ) < r. Therefore,

rank(Bp) < min{rank(BH) + rank(Blg), rank(Bn) + rank(Bgl)} <r-+r=2r

as desired. O



REFERENCES 66

« For f(z) = alz|,a € R, consider Lipschitz constant & > |a| and any neighborhood
including 0.

+ Tor f(x) — r?sin(1/x) ifz #0

0 ifz=0
tive of f at z = 0 is 0. For any 2 # 0 we have |f’(z)| < 2|z| - |sin%‘ + |cos%‘ < 3.
Therefore we can pick any Lipschitz constant K > 3 and any neighborhood including 0.

, note that previously we have proved that the deriva-

For f(x) = 3rd largest entry of x, n > 3, note that the perturbation is bounded by the largest
change in any single element of x, which directly satisfies the Lipschitz condition |f(z) —
f@)| < ||z — y|| for some L > 1.

For f(x) = largest entry of Az, where A is any n X n matrix, take any vectors x and y,

|f(z) = f(y)l = max(Az); — max(Ay)i| < max|(Az)i — (Ay)i]

7

< [|Az = Ay| < [[A[lllz = yll

where || A|| is the operator norm of A. Hence, f(z) = max;(Ax); is locally Lipschitz with a
Lipschitz constant that could be the operator norm of A.

By [RW98, Thm 9.61], we have for regular at 2 functions ¢ f () = 0f(z). Therefore,

« f(z) = [a|* has 9 f(0) = 9f(0) = {0},

.+ f(x) = alal(a > 0) has 8°£(0) = [~a,d),

« and f(z) = largest entry of Az has 9° f(0) = {ATy : y € conv{ey, ..., e,}} similarly.
On the other hand, by definition we have

. for f(z) = alz|(a < 0), 3 f(0) = conv(df(0)) = conv({—a,a}) = [~a,al,

z?sin(1/z) ifz #0

0 ifgjzo,a({f(o) = conv([—1,1]) = [-1,1],

« for f(z) = {

. for f(x) = 3rdlargest entry of 2, 9 f(0) = conv({y : y € convi{el,...,e"}}) =
conviel, ... e"}.

O]
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