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Disclaimer:

These are the problem sets for the course Convex and Nonsmooth Optimization, given by Dr.

Michael L. Overton, Silver Professor of Computer Science and Mathematics, at New York Uni-

versity in Spring 2024.

Convex optimization problems have many important properties, including a powerful duality the-

ory and the property that any local minimum is also a global minimum. Nonsmooth optimization

refers to minimization of functions that are not necessarily convex, usually locally Lipschitz, and

typically not differentiable at their minimizers. Topics in convex optimization that will be covered

include duality, linear and semidefinite programming, CVX (“disciplined convex programming”),

gradient and Newton methods, Nesterov’s lower complexity bound and optimal gradient method,

the alternating direction method of multipliers, the nuclear norm and matrix completion, primal-

dual interior-point methods for linear and semidefinite programs. Topics in nonsmooth optimiza-

tion that will be covered include subgradients and subdifferentials, Clarke regularity, and algo-

rithms, including gradient sampling, BFGS and the stochastic gradient method, for nonsmooth,

nonconvex optimization. The text is [BV04]. Other references include [Nes18].

The solutions are mostly given by Rex Liu with help from Tao Li, Yizheng (Thomas) Li, Letao

(Jenna) Chen, and Zhen (Bobby) Bao. If you see any mistakes or think that the presentation is

unclear and could be improved, please send an email to: cl5682@nyu.edu. All comments and

suggestions are appreciated.

https://www.linkedin.com/in/rexliu9/
https://math.nyu.edu/dynamic/
https://cs.nyu.edu/~overton/
mailto:
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Notations:

• Sn+: the set of symmetric positive semidefinite n× n matrices.

• Sn++: the set of symmetric positive definite n× n matrices.

• K∗
: the dual cone of the cone K .

• x ⪰ y, y ⪯ x: componentwise inequality between vectors x and y.

• 1: vector with all components one.

• diag(x): diagonal matrix with diagonal entries x1, . . . , xn.

• Conv(C): the convex hull of a set C .
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cvx_end

% Generate the figure
figure;
x = linspace(-10, 10); % Adjust this range as needed
theta = 0:pi/100:2*pi;
hold on
for k = 1:colsA

if A(2, k) ~= 0
plot(x, -x*A(1, k)./A(2, k) + b(k)./A(2, k), 'b-');

else
y_line = b(k) / A(1, k); % For horizontal lines
plot([min(x), max(x)], [y_line, y_line], 'b-');

end
end
plot(x_c(1) + r*cos(theta), x_c(2) + r*sin(theta), 'r');
plot(x_c(1), x_c(2), 'k+');
xlabel('x_1');
ylabel('x_2');
title('Largest Euclidean ball lying in a 2D polyhedron');
axis equal;
hold off

end

Figure 1 shows the example on the webpage (left) as well as another example with more in-

equalities (right).

Figure 1: Largest Euclidean ball lying in a 2D polyhedron

7. What happens if you choose A and b so there is no point inside the polyhedron?

Proof. It will be an infeasible region (an empty polyhedron). In MatLab when running such
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title(['Largest ball in ' num2str(p) '-norm']);
end

Here are the plots (Figure 2) for p = 1, 1.5,∞, respectively.

Figure 2: Largest p-norm ball

9. Explain why your answer to the previous question does not extend to work for p < 1, for

which MatLab’s norm(x,p) is still well defined? What goes wrong if you try it anyway?

Solution. It is because when p < 1 it does not satisfy the triangle inequality, thus not a norm

by definition. If we try it anyway, it does not fit as the correct “largest ball.”

10. Is there a simple way to change the code so that it will actually still give the right answer

when p < 1? Justify your answer and run and show the output for an example.

Solution. A simple way is to change the eighth line of code p==1 into p<=1. The reason is that

the convex polyhedron cannot intersect the concave regions of a non-convex ball. An example

is given in Figure 3 for p = 1/2.

Figure 3: Largest ball for p < 1
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Solution. Note that x ≥ 0 ⇐⇒ −x ≤ 0. By definition, the Lagrangian is

L(x, λ) = ex − λx

The Lagrange dual is obtained by minimizing the Lagrangian over x, for a given λ:

g(λ) = inf
x≥0

L(x, λ) = inf
x≥0

(ex − λx)

Taking the derivative while checking the valid domain of λ, one gets

g(λ) =

{
−∞ λ < 0

λ− λ ln(λ) λ ≥ 0

−1 0 1 2 3 4
−2

−1

0

1

2

g(λ)

The plot is sketched above.

(b) Solve the Lagrange dual problem by maximizing g(λ) over λ ≥ 0. Does strong duality

hold?

Proof. The dual problem is to

maximize λ− λ ln(λ)
subject to λ ≥ 0

By taking the derivative of g(λ), we see that sup g(λ) is reached at g(1) = 1. The dual

problem has an optimal value d∗ = 1. Since p∗ = d∗, strong duality holds.

3. Consider the optimization problem

minimize x2 + 1
subject to (x− 2)(x− 4) ≤ 0

with variable x ∈ R.
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(a) Give the feasible set, the optimal value, and the optimal solution.

Solution. Solving (x − 2)(x − 4) ≤ 0 yields x ∈ [2, 4], which is the feasible set. Since

x2 + 1 is monotonically increasing in the feasible set, the optimal value is reached at

x⋆ = 2 with p⋆ = 22 + 1 = 5.

(b) Plot the objective x2 +1 versus x. On the same plot, show the feasible set, optimal point

and value, and plot the Lagrangian L(x, λ) versus x for a few positive values of λ. Verify

the lower bound property (p⋆ ≥ infx L(x, λ) for λ ≥ 0). Derive and sketch the Lagrange

dual function g.

Solution. By definition, the Lagrangian is

L(x, λ) = (1 + λ)x2 − 6λx+ (1 + 8λ)

The plot of the objective x2+1 as well as L(x, λ), λ = 1, 2, 3 versus x is given as follows:

0 1 2 3 4
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25

(x⋆, p⋆)

x2 + 1

L(x, 1)

L(x, 2)

L(x, 3)

The lower bound property is verified that the minimum value of L(x, λ) over x is always

less than p⋆. Note that for λ > 0, by the AM-GM inequality,

inf
x
L(x, λ) = 1 + 8λ− 9λ2

1 + λ

k=1+λ
= 11− k − 9

k
≤ 5 = p⋆

where equiality is reached at k = 3, i.e. λ = 2.

Note that the above infimum is valid for λ > −1, since f0, f1 both have principal coeffi-

cient 1. For λ ≤ −1 it is unbounded below. Thus

g(λ) =

{
1 + 8λ− 9λ2

1+λ λ > −1

−∞ λ ≤ −1
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The plot is sketched above.

(c) State the dual problem, and verify that it is a concave maximization problem. Find the

dual optimal value and dual optimal solution λ⋆
. Does strong duality hold?

Solution. The Lagrange dual problem is

maximize 1 + 8λ− 9λ2

1+λ

subject to λ ≥ 0

It is a concave maximization problem as we have checked that the infimum is reached at

λ = 2 and g(λ) is decreasing either when λ goes down to 0 or goes up to ∞. The dual

optimal value is reached at λ⋆ = 2 with d⋆ = 5. The strong duality holds as d⋆ = p⋆.

4. A convex problem in which strong duality fails. Consider the optimization problem

minimize e−x

subject to x2/y ≤ 0

with variables x and y, and domain D = {(x, y) | y > 0}.

(a) Verify that this is a convex optimization problem. Find the optimal value.

Solution. For e−x
, note that (e−x)′′ = e−x > 0 for all x, so f0(x) is convex. For x2/y,

note that the Hessian matrix (
2
y

−2x
y2

−2x
y2

2x2

y3

)
is positive semidefinite for y > 0 since its eigenvalues areλ1 = 0 andλ2 = 2(x2+y2)/y3,

so f1(x, y) is convex. Therefore, it is indeed a convex optimization problem.

Note that x2 ≥ 0 for all x but the domain restricts y > 0, and the inequality constraint

further restricts x2 ≤ 0, implying that x can only be 0, so the optimal value p⋆ = 1.
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Figure 7: Comparison of three gradient methods for example 1

decreases much slower than O(1/k) for t = 1/M when the number k of iterations is not large

enough. It is thus valid in the plot that gradient with step size 1/M converges faster.

For the second example, I chose M = 564 and m = 2, which were estimated in the previous

section. See Figure 8 for the result, which aligns with the theoretical guarantees.

Figure 8: Comparison of three gradient methods for example 2

For the last two examples, we first code matrix T (see [Nes18, p. 78, matrix A]) where its diagonal

has entries 2 while sub-diagonals have entries −1 in an efficient way:

T = 2*speye(dim); % Main diagonal
T(2:dim+1:end) = -1; % upper subdiagnoal
T(dim+1:dim+1:end) = -1; % lower subdiagnoal

Then we code the function the calculate f and ∇f :
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function [f, g] = badFunction(x, m, M, T, e1)
% Nesterove's worst case example
% input: m, M: mu and L in book; T: matrix A in book; e1: e_1 in book

% Calculate the quadratic form component of the function value
quadraticForm = norm(x(1:end-1) - x(2:end))^2;
% Incorporate the first element's squared value and adjustment
quadraticForm = x(1)^2 + quadraticForm - 2*x(1);
% Calculate f
f = (M - m) / 8 * quadraticForm + m / 2 * norm(x)^2;

% Compute the gradient 'g'
g = (M - m) / 4 * T * x + m * x - (M - m) / 4 * e1;
end

See Figure 9 and 10, respectively, for the results. It is checked that mI ⪯ ∇2F ⪯ MI by

Figure 9: Comparison of three gradient methods for example 3

Figure 10: Comparison of three gradient methods for example 4
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ρ\λ 0.01 0.1 1

0.1 8586 8298 7864
1 8519 7870 7054
10 8551 7927 4932

Table 1: Large problem numbers of nonzeros for different ρ and λ combinations

spy(L);
title('Sparsity Pattern of Cholesky Factor L');

Figure 11: Sparsity patterns of randomly generated matrices A and L, with ρ picked as 1

Then, inside the ADMM iteration you can solve the relevant systems with forward and back

substitution [BV04, Algorithm C.2, p.670], using the backslash operator \.

For both the small problem and the large problem:

• Experiment with λ : does larger λ result in solutions x which are more sparse, as it should?

• Experiment with ρ : what effect does this have on the method?

Solution. Please see Figures 12 and 13 for the logplots. Sparsity of the small problem remains

unchanged with all same nz values, probably due to its small size. Sparsity of the large problem

has the following trend (for a random trial):

The reduction in nonzeros as λ increases confirms that the regularization effectively promotes

sparsity in the solution. The effect of varying ρ on the sparsity of the solution is less pronounced
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Figure 14: Logplots of Matrix Completion Convergence for X1, X2, X3

Proof. We want to show that

∥X∥ ≤ ∥X∥F ≤ ∥X∥∗ ≤
√
r∥X∥F ≤ r∥X∥

for any matrix X of rank at most r, where σi’s are the singular values of X , which are all

positive, ∥X∥F =
(∑r

i=1 σ
2
i

) 1
2
, ∥X∥ = σ1(X), and ∥X∥∗ =

∑r
i=1 σi(X).

The first inequality ∥X∥ ≤ ∥X∥F is trivially true, since σ2
1 ≤

∑
i σ

2
i . Then, since the singular

values are all positive, we have

∑
i σ

2
i ≤ (

∑
i σi)

2
, so that ∥X∥F ≤ ∥X∥∗. By the AM-QM

inequality
5
, we also have (σ1+· · ·+σr)/r ≤

√(∑
i σ

2
i

)
/r. Multiplying r on both sides yields

∥X∥∗ ≤
√
r∥X∥F . The last inequality

√
r∥X∥F ≤ r∥X∥ is again trivial, as it is equivalent

saying, by taking squares on both sides, that σ2
1 + · · ·+ σ2

r ≤ σ2
1 + · · ·+ σ2

1 , which is true as

σ1 is the largest of all σi.

5

The arithmetic mean and quadratic mean inequality states that, for positive reals xi, we have(∑n
i=1 xi

n

)2

≤
∑n

i=1 x
2
i

n
,

which can be proved by applying the Cauchy–Schwarz inequality on vectors x and 1.
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5. Consider the nuclear norm relaxation of the generalization of the matrix completion problem

stated on [RFP10, p. 480]. Show that the program written on the right side is indeed its dual.

Here, if A(X) = b means ⟨Ak, X⟩ = bk, k = 1, ..., p, then A∗(z) means the adjoint operation,∑
k zkAk.

Proof. The primal problem is:

minimize

1

2
(tr(W1) + tr(W2))

subject to

[
W1 X
X⊤ W2

]
⪰ 0

A(X) = b

Note that W1 and W2 are symmetric. The constraint A(X) = b can be expanded to ⟨Ak, X⟩ =
bk for k = 1, . . . , p, where {Ak} are given matrices forming the linear operator A.

Construct the Lagrangian L with dual variables Z (a symmetric matrix) for the semidefinite

constraint and z ∈ Rp
(vector) for the linear constraints:

L(W1,W2, X, Z, z)

=
1

2
(tr(W1) + tr(W2))− tr

(
Z

[
W1 X
X⊤ W2

])
+ ⟨z, b−A(X)⟩

=
1

2
tr(W1(I − 2Z11)) +

1

2
tr(W2(I − 2Z22))

− tr(Z12X)− tr(Z21X
⊤)− tr(A∗(z)X) + b⊤z

where Z =

[
Z11 Z12

Z21 Z22

]
.

The dual function g(z, Z) is obtained by minimizing L with respect to W1,W2, and X :

g(z, Z) = inf
W1,W2,X

L

By taking the gradients of L with respect to W1,W2, X and setting them to zero, we get

I− 2Z11 = 0, I− 2Z22 = 0, and Z12+Z⊤
21+A∗(z) = 2Z12+A∗(z) = 0. Therefore we have

maximize b⊤z

subject to

[
1
2I −1

2A
∗(z)

−1
2A

∗(z)⊤ 1
2I

]
⪰ 0

which is equivalent to
6

the condition stated on [RFP10, p. 480].

6

Note that

A =

[
Im Y

Y ⊤ In

]
⪰ 0 is equivalent to B =

[
Im −Y

−Y ⊤ In

]
⪰ 0
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6. (a) Consider some extreme examples of the restricted isometry property (RIP) [RFP10, Defi-

nition 3.1]. Assume m = n = 2 and let rank r = 1.

i. Let A(X) = [x11, x12, x21]
′
. Find a matrix X which proves that there is no δr < 1

that works, i.e., satisfies [RFP10, Eqn (3.2)], for all X .

Solution. Let X =

[
0 0
0 1

]
. We have

∥X∥F =
√
x211 + x212 + x221 + x222 =

√
02 + 02 + 02 + 12 = 1

and

∥A(X)∥ = ∥[0, 0, 0]′∥ =
√
02 + 02 + 02 = 0

Plugging in the RIP inequality [RFP10, Eqn (3.2)], we get δr ≥ 1, implying that there

is no δr < 1 that works, as desired.

ii. Let A(X) = [x11, x12 + x21, x22]
′
. Complete the proof that δr = 1 − 1/

√
2 works,

and find an example X that shows that no smaller δr works.

Proof. Given X =

[
x11 x12
x21 x22

]
, and since r = 1, X has the property x11x22 =

x12x21. Given

∥X∥F =
√

x211 + x212 + x221 + x222

and

∥A(X)∥2 =
√
x211 + (x12 + x21)2 + x222

Note that (x11+x22)
2+(x12+x21)

2 ≥ 0 along with the fact that x11x22 = x12x21
leads to ∥A(X)∥22 ≥ ∥X∥2F /2. Also, (x11 − x22)

2 + (x12 − x21)
2 ≥ 0 leads to

∥A(X)∥22 ≤ 3∥X∥2F /2.

Given the bounds, we aim for δr such that:

(1− δr)∥X∥F ≤ ∥A(X)∥2 ≤ (1 + δr)∥X∥F

For the minimal δr that fits these inequalities, we need:

(1− δr)
2∥X∥2F ≤ ∥X∥2F /2 and (1 + δr)

2∥X∥2F ≥ 3∥X∥2F /2

Simplifying, we get δr ≥ 1− 1/
√
2 as desired.

as the quadratic forms

qA(x, y) =
[
x⊤ y⊤] [ Im Y

Y ⊤ In

] [
x
y

]
= x⊤x+ x⊤Y y + y⊤Y ⊤x+ y⊤y = qB(x,−y)

need to be non-negative for all (x, y) ∈ Rm+n
.
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For example, consider X =

[
1 1
−1 −1

]
. We have ∥X∥F = 2 and ∥A(X)∥2 =

√
2.

Plugging in the RIP inequality [RFP10, Eqn (3.2)], we get δr ≥ 1 − 1/
√
2, implying

that there is no smaller δr that works, as desired.

(b) Complete the proof of [RFP10, Lemma 3.4].

Proof. Let A,B ∈ Rm×n
be matrices of the same dimensions. We want to show that

there exist matrices B1 and B2 such that

i. B = B1 +B2,

ii. rankB1 ≤ 2 rankA,

iii. AB⊤
2 = 0 and A⊤B2 = 0,

iv. ⟨B1, B2⟩ = 0.

Consider a full singular value decomposition of A,

A = U

[
Σ 0
0 0

]
V ⊤

where Σ ∈ Rr×r
, and let B̂ := U⊤BV . Partition B̂ as

B̂ =

[
B̂11 B̂12

B̂21 B̂22

]
where B̂11 ∈ Rr×r

. Define now

B1 := U

[
B̂11 B̂12

B̂21 0

]
V ⊤, B2 := U

[
0 0

0 B̂22

]
V ⊤,

and we check that B1 and B2 satisfy the above conditions. Indeed, i, ii, iv are trivially

true: B = UB̂V ⊤ = B1 +B2, and since U⊤U = V ⊤V = I we have

AB⊤
2 = U

[
Σ 0
0 0

] [
0 0

0 B̂⊤
22

]
U⊤ = U

[
0 0
0 0

]
U⊤ = 0

and similarly A⊤B2 = 0. Lastly, ⟨B1, B2⟩ = tr(B⊤
1 B2) = tr(0) = 0.

We now show that rankB1 ≤ 2 rankA = 2r. Indeed, we have rank(B̂11) ≤ r and

rank(B̂21) ≤ min(m− r, r) ≤ r, rank(B̂12) ≤ min(r, n− r) ≤ r. Therefore,

rank(B1) ≤ min{rank(B̂11) + rank(B̂12), rank(B̂11) + rank(B̂21)} ≤ r + r = 2r,

as desired.
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• For f(x) = a|x|, a ∈ R, consider Lipschitz constant K > |a| and any neighborhood

including 0.

• For f(x) =

{
x2 sin(1/x) if x ̸= 0

0 if x = 0
, note that previously we have proved that the deriva-

tive of f at x = 0 is 0. For any x ̸= 0 we have |f ′(x)| ≤ 2|x| ·
∣∣sin 1

x

∣∣ + ∣∣cos 1
x

∣∣ ≤ 3.

Therefore we can pick any Lipschitz constant K > 3 and any neighborhood including 0.

For f(x) = 3rd largest entry of x, n ≥ 3, note that the perturbation is bounded by the largest

change in any single element of x, which directly satisfies the Lipschitz condition |f(x) −
f(y)| ≤ ∥x− y∥ for some L > 1.

For f(x) = largest entry of Ax, where A is any n× n matrix, take any vectors x and y,

|f(x)− f(y)| =
∣∣∣∣max

i
(Ax)i −max

i
(Ay)i

∣∣∣∣ ≤ max
i

|(Ax)i − (Ay)i|

≤ ∥Ax−Ay∥ ≤ ∥A∥∥x− y∥

where ∥A∥ is the operator norm of A. Hence, f(x) = maxi(Ax)i is locally Lipschitz with a

Lipschitz constant that could be the operator norm of A.

By [RW98, Thm 9.61], we have for regular at x functions ∂Cf(x) = ∂f(x). Therefore,

• f(x) = |x|3 has ∂Cf(0) = ∂f(0) = {0},

• f(x) = a|x|(a ≥ 0) has ∂Cf(0) = [−a, a],

• and f(x) = largest entry of Ax has ∂Cf(0) = {A⊤y : y ∈ conv{e1, ..., en}} similarly.

On the other hand, by definition we have

• for f(x) = a|x|(a < 0), ∂Cf(0) = conv(∂f(0)) = conv({−a, a}) = [−a, a],

• for f(x) =

{
x2 sin(1/x) if x ̸= 0

0 if x = 0
, ∂Cf(0) = conv([−1, 1]) = [−1, 1],

• for f(x) = 3rd largest entry of x, ∂Cf(0) = conv({y : y ∈ conv{e1, . . . , en}}) =
conv{e1, . . . , en}.
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